Challenges of spatial 3D display techniques to optoelectronics

Jiang WU, Xu LIU

PDF(245 KB)
PDF(245 KB)
Front. Optoelectron. ›› 2009, Vol. 2 ›› Issue (4) : 355-361. DOI: 10.1007/s12200-009-0068-y
REVIEW ARTICLE
REVIEW ARTICLE

Challenges of spatial 3D display techniques to optoelectronics

Author information +
History +

Abstract

In the development of flat panel display techniques and digital image processing techniques, the data processing ability progresses so greatly, and it makes the three-dimensional display (3D display) possible. Recently, the 3D display technique develops so fast, it changes totally the traditional 3D viewing effect and makes 3D display become a possible technique in our daily life. In this paper, the different 3D techniques will be reviewed, and much more focus on the real spatial 3D display techniques, especially the challenges of the high-quality spatial 3D display to the optoelectronics will be analyzed, which will be the sources for the future ideal 3D display technique.

Keywords

spatial display / three-dimensional display (3D display) / holographic display / optoelectronics

Cite this article

Download citation ▾
Jiang WU, Xu LIU. Challenges of spatial 3D display techniques to optoelectronics. Front Optoelec Chin, 2009, 2(4): 355‒361 https://doi.org/10.1007/s12200-009-0068-y

References

[1]
Wheatstone C. Contribution to the Physiology of Vision. London: Philosophical Transaction of the Royal society of London, 1938
[2]
Ives F E. US Patent, 725567, 1903-<month>04</month>-<day>14</day>
[3]
Isono H, Yasuda M, Kusaka H, Morita T. 3D flat-panel displays without glasses. In: Proceedings of the Society for Information Display. 1990, 31(3): 263–266
[4]
Gabor D. Microscopy by recorded wavefronts. In: Proceedings of the Royal Society. 1949, 446–469
[5]
Tay S, Yamamoto M, Peyghambarian N. An updateable holographic 3-D display based on photorefractive polymers. In: Proceedings of SID International Symposium. 2008, 356
[6]
Parker E, Wallis P A. Three-dimensional cathode-ray tube displays. The Journal of the Institution of Electrical Engineers, 1948, 95, Part III: 371–390
[7]
Langhans K, Bahr D, Bezecny D, Homann D, Oltmann K, Oltmann K, Guill C, Rieper E, Ardey G. FELIX 3D display: an interactive tool for volumetric imaging. Proceedings of SPIE, 2002, 4660: 176–190
CrossRef Google scholar
[8]
Davies N, McCormick M, Yang L. Three-dimensional imaging systems: a new development. Applied Optics, 1988, 27(21): 4520–4528
CrossRef Google scholar
[9]
Hines S P. Autostereoscopic video display with motion parallax. Proceedings of SPIE, 1997, 3012: 208–219
CrossRef Google scholar
[10]
van Berkel C. Image preparation for 3D-LCD. Proceedings of SPIE, 1999, 3639: 84–91
CrossRef Google scholar
[11]
Lipton L. <patent>US Patent, 6519088</patent>, 2002-<month>2</month>-<day>11</day>
[12]
De Zwart S T, Ijzerman W L, Dekker T, Wolter W A M. A 20" switchable auto-stereoscopic 2D/3D display. In: Proceedings of the 11th International Conference on Auditory Display.2004, 11: 1459–1460
[13]
Kim S S, Sohn K H, Savaljev V, Pen E F, Son J Y, Chun J H. Optical design and analysis for super multiview three-dimensional imaging system. Proceedings of SPIE, 2001, 4297: 222–226
CrossRef Google scholar
[14]
Tay S, Blanche P A, Voorakaranam R, Tuns A V, Lin W, Rokutanda S, Gu T, Flores D, Wang P, Li G, St Hilaire P, Thomas J, Norwood R A, Yamamoto M, Peyghambarian N. An updatable holographic three-dimensional display. Nature, 2008, 451(7179): 694–698
CrossRef Google scholar
[15]
Bahr D, Langhans K, Gerken M, Vogt C, Bezecny D, Homann D. Felix: a volumetric 3D laser display. Proceedings of SPIE, 1996, 2650: 265–273
CrossRef Google scholar
[16]
Texas Instruments. The DLP DiscoveryTM 4000, 2008
[17]
Favalora G E, Dorval R K, Hall D M, Giovinco M, Napoli J. Volumetric three-dimensional display system with rasterization hardware. Proceedings of SPIE, 2001, 4297: 227–235
CrossRef Google scholar
[18]
Perspecta. Actuality Systems, Inc., Burlington, MA. 2004
[19]
Lin Y F, Liu X, Yao Y, Zhang X J, Liu X D, Lin F C. Key factors in the design of a LED volumetric 3D display system. Proceedings of SPIE, 2005, 5632: 147–154
CrossRef Google scholar
[20]
Xie X Y, Liu X, Lin Y F. The investigation of data voxelization for a three-dimensional volumetric display system. Journal of Optics A: Pure and Applied Optics, 2009, 11(4): 045707
CrossRef Google scholar
[21]
Lippmann M G. Epreuves reversibles donnant la sensation du relief. Journal de Physique, 1908, 7(4): 821–825
[22]
Lee B. Current status of integral imaging after 100 years of history. In: Proceedings of IMID/IDMC/ASIA DISPLAY’08, 2008, 1127–1130
[23]
Min S W, Hahn M, Kim J, Lee B. Three-dimensional electro-floating display system using an integral imaging method. Optics Express, 2005, 13(12): 4358–4369
CrossRef Google scholar
[24]
Takeichi A, Yendo T, Fujii T, Tanimoto M. A novel 3D display using two lens arrays and shift of element images. Proceedings of SPIE, 2008, 6803: 68030A
CrossRef Google scholar
[25]
Okano F, Kawakita M, Arai J, Sasaki H, Yamashita T, Sato M, Suehiro K, Haino Y. Three-dimensional integral television using extremely high-resolution video system with 4,000 scanning lines. Proceedings of SPIE, 2007, 6778: 677805
CrossRef Google scholar
[26]
Liao H, Iwahara M, Hata N, Dohi T. High-quality integral videography using a multiprojector. Optics Express, 2004, 12(6): 1067–1076
CrossRef Google scholar
[27]
Cossairt O, Travis A R, Moller C, Benton S A. Novel view sequential display based on DMD technology. Proceedings of SPIE, 2004, 5291: 273–278
CrossRef Google scholar
[28]
Jones A, McDowall I, Yamada H, Bolas M, Debevec P. Rendering for an interactive 360° light field display. In: Proceedings of ACM SIGGRAPH’07. 2007, 5–9
[29]
Yan C J, Liu X, Li H F, Xia X X, Lu H X, Zheng W T. Color three-dimensional display with omnidirection view based on a light-emitting diode projector. Applied Optics, 2009, 48(22): 4490–4495
CrossRef Google scholar
[30]
Hashimoto N, Morokawa S. Real-time electroholographic system using liquid crystal television spatial light modulators. Journal of Electronics Imaging, 1993, 2(2): 93–99
CrossRef Google scholar
[31]
St Hilarie P, Benton S A, Lucente M, Hubel P M. Color images with the MIT holographic video display. Proceedings of SPIE, 1992, 1667: 73–84
[32]
Onural L, Bozdagi G, Atalar A. New high-resolution display device for holographic three-dimensional video: principles and simulations. Optical Engineering, 1994, 33(3): 835–844
CrossRef Google scholar
[33]
Maeno K, Fukaya N, Nishikawa O, Sato K, Honda T. Electro-holographic display using 15 mega pixels LCD. Proceedings of SPIE, 1996, 2652: 15–23
CrossRef Google scholar
[34]
Yoshikawa H, Tamai J. Holographic image compression by motion picture coding. Proceedings of SPIE, 1996, 2652: 2–9
CrossRef Google scholar
[35]
Kreis T, Aswendt P, Höfling R. Hologram reconstruction using a digital micromirror device. Optical Engineering, 2001, 40(6): 926–933
CrossRef Google scholar
[36]
Ito T. Color electroholography by three colored reference lights simultaneously incident upon one hologram panel. Optics Express, 2004, 12(18): 4320–4325
CrossRef Google scholar
[37]
Poon T C, Akin T, Indebetouw G, Kim T. Horizontal-parallax-only electronic holography. Optics Express, 2005, 13(7): 2427–2432
CrossRef Google scholar
[38]
Ahrenberg L, Benzie P, Magnor M, Watson J. Computer generated holography using parallel commodity graphics hardware. Optics Express, 2006, 14(17): 7636–7641
CrossRef Google scholar
[39]
Huebschman M, Munjuluri B, Garner H. Digital micromirrors enable holographic video display. Laser Focus World, 2004, 40(5): 111–116
[40]
Kimura H, Uchiyama T, Yoshikawa H. Laser produced 3D display in the air. In: Proceedings of ACM SIGGRAPH’06. 2006, 20

Acknowledgements

This work was supported by the National High-Technology Research and Development Program (“863” Program) of China (No. 2007AA01Z339).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(245 KB)

Accesses

Citations

Detail

Sections
Recommended

/