An analysis of spatial vitality distribution and formation mechanisms in historical urban areas based on multi-source big data: A case study of Changsha

Yiyu Long , Sheng Jiao , Yan Yu , Kaiyin Xiao

Front. Archit. Res. ›› 2025, Vol. 14 ›› Issue (6) : 1727 -1749.

PDF (12677KB)
Front. Archit. Res. ›› 2025, Vol. 14 ›› Issue (6) :1727 -1749. DOI: 10.1016/j.foar.2025.03.005
RESEARCH ARTICLE

An analysis of spatial vitality distribution and formation mechanisms in historical urban areas based on multi-source big data: A case study of Changsha

Author information +
History +
PDF (12677KB)

Abstract

As global urbanization accelerates, the spatial vitality of historical urban areas has become a critical issue in urban regeneration and sustainable development. Some existing spatial vitality evaluation frameworks fail to integrate multiple dimensions effectively, limiting their capacity to capture the dynamic complexity of these areas comprehensively. This study utilizes multi-source big data and deep learning technologies to propose a new multidimensional evaluation system for spatial vitality, improving existing models and systematically analyzing distribution patterns and formation mechanisms. The research results show that: (1) The spatial vitality of Changsha's historical urban area exhibits a distinct “core-periphery” pattern. Core commercial zones show high vitality due to functional concentration, whereas peripheral areas have weaker vitality because of lower physical space quality and limited functional diversity. (2) Through correlation and principal component analyses, five key factors influencing spatial vitality were identified: emotional perception, visual aesthetics, spatial attractiveness, Functionality and Structure, and traffic conditions. (3) Bivariate spatial autocorrelation analysis further revealed spatial clustering effects between spatial vitality and its key factors, emphasizing the potential for enhancing functional diversity and optimizing road traffic conditions in core areas. The study's findings offer scientific guidance for urban regeneration and policy-making, particularly in optimizing spatial layouts, enhancing vitality, and fostering the coordinated development of cultural heritage protection, providing valuable insights for other developing countries.

Keywords

Street view images / Deep learning / Sentiment prediction / Historical urban areas / Spatial vitality

Cite this article

Download citation ▾
Yiyu Long, Sheng Jiao, Yan Yu, Kaiyin Xiao. An analysis of spatial vitality distribution and formation mechanisms in historical urban areas based on multi-source big data: A case study of Changsha. Front. Archit. Res., 2025, 14(6): 1727-1749 DOI:10.1016/j.foar.2025.03.005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao, K. , Deng, Y. , Song, C. , 2023. Exploring the drivers of urban renewal through comparative modeling of multiple types in Shenzhen, China. Cities 137, 104294.

[2]

Chen, L.C. , Papandreou, G. , Kokkinos, I. , Murphy, K. , Yuille, A.L. , 2017. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40 (4), 834- 848.

[3]

Chen, W. , Wu, A.N. , Biljecki, F. , 2021. Classification of urban morphology with deep learning: Application on urban vitality. Comput. Environ. Urban Syst. 90, 101706.

[4]

Chen, L.C. , Zhu, Y. , Papandreou, G. , Schroff, F. , Adam, H. , 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801-818.

[5]

Cordts, M. , Omran, M. , Ramos, S. , Rehfeld, T. , Enzweiler, M. , Benenson, R. , Schiele, B. , 2016. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213-3223.

[6]

Dai, L. , Zheng, C. , Dong, Z. , Yao, Y. , Wang, R. , Zhang, X. , Ren, S. , Zhang, J. , Song, X. , Guan, Q. , 2021. Analyzing the correlation between visual space and residents' psychology in Wuhan, China using street-view images and deep-learning technique. City Environ. Interact. 11, 100069.

[7]

Davis, J. , 2009. Urban catalysts in theory and practice. Archit. Res. Q. 13 (3-4), 295- 306.

[8]

Delclòs-Alió X. , Gutiérrez, A. , Miralles-Guasch, C. , 2019. The urban vitality conditions of Jane Jacobs in Barcelona: residential and smartphone-based tracking measurements of the built environment in a Mediterranean metropolis. Cities 86, 220- 228.

[9]

Demšar, U. , Harris, P. , Brunsdon, C. , Fotheringham, A.S. , McLoone, S. , 2013. Principal component analysis on spatial data: an overview. Ann. Assoc. Am. Geogr. 103 (1), 106- 128.

[10]

Díaz-Andreu, M. , 2017. Heritage values and the public. J. Community Archaeol. Herit. 4 (1), 2- 6.

[11]

Du, T. , Fertner, C. , Jiang, W. , Andersen, L.M. , Vejre, H. , 2023. Understanding the change in the social networks of residential groups affected by urban renewal. Environ. Impact Assess. Rev. 98, 106970.

[12]

Dubey, A. , Naik, N. , Parikh, D. , Raskar, R. , Hidalgo, C.A. , 2016. Deep learning the city: quantifying urban perception at a global scale. In: Computer VisioneECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part I 14, pp. 196-212.

[13]

El-Khouly, T. , Eldiasty, A. , Kamel, B. , 2023. Monitoring the transformation in New Cairo's urban vitality and the accompanying social and economic phenomena. Front. Archit. Res. 12 (5), 867- 891.

[14]

Gong, H. , Li, Y. , Zhang, J. , Zhang, B. , Wang, X. , 2024. A new filter feature selection algorithm for classification task by ensembling pearson correlation coefficient and mutual information. Eng. Appl. Artif. Intell. 131, 107865.

[15]

Guo, X. , Yang, Y. , Cheng, Z. , Wu, Q. , Li, C. , Lo, T. , Chen, F. , 2022. Spatial social interaction: an explanatory framework of urban space vitality and its preliminary verification. Cities 121, 103487.

[16]

Guo, Z. , Luo, K. , Yan, Z. , Hu, A. , Wang, C. , Mao, Y. , Niu, S. , 2024. Assessment of the street space quality in the metro station areas at different spatial scales and its impact on the urban vitality. Front. Archit. Res. 13 (6), 1270- 1287.

[17]

He, K. , Zhang, X. , Ren, S. , Sun, J. , 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778.

[18]

Jacobs, J. , 1961. The Death and Life of Great American Cities. Random House, New York, New York.

[19]

Jin, A. , Ge, Y. , Zhang, S. , 2024. Spatial characteristics of multidimensional urban vitality and its impact mechanisms by the built environment. Land 13 (7), 991.

[20]

Jolliffe, I.T. , Cadima, J. , 2016. Principal component analysis: a review and recent developments. Phil. Trans. Math. Phys. Eng. Sci. 374 (2065), 20150202.

[21]

Kim, J. , Kim, D. , David-John, B. , 2024. The role of privacy concerns, perceived benefits, and trust in citizens' acceptance of street-view image collection by local planning agencies. Cities 154, 105339.

[22]

Li, K. , 2024. Research on the factors influencing the spatial quality of high-density urban streets: a framework using deep learning, street scene images, and principal component analysis. Land 13 (8), 1161.

[23]

Lidegaard, C. , Nuccio, M. , Bille, T. , 2018. Fostering and planning urban regeneration: the governance of cultural districts in Copenhagen. Eur. Plan. Stud. 26 (1), 1- 19.

[24]

Lyu, Y. , Abd Malek, M.I. , Jaafar, N.H. , Sima, Y. , Han, Z. , Liu, Z. , 2023. Unveiling the potential of space syntax approach for revitalizing historic urban areas: a case study of Yushan Historic District, China. Front. Archit. Res. 12 (6), 1144- 1156.

[25]

Ma, Z. , 2023. Deep exploration of street view features for identifying urban vitality: a case study of Qingdao city. Int. J. Appl. Earth Obs. Geoinf. 123, 103476.

[26]

Madrid-Solorza, S. , Marquet, O. , Fuentes, L. , Miralles-Guasch, C. , 2024. The social implications of the vital city model: measuring the impact of urban vitality on neighbourhood sustainability. Local Environ. 1-18.

[27]

Mao, W. , Zhong, Y. , 2020. Spatial pattern and influencing factors of urban vitality in the middle reaches of the Yangtze River. World Reg. Stud. 29 (1), 86.

[28]

Matthews, T. , Gadaloff, S. , 2022. Public art for placemaking and urban renewal: insights from three regional Australian cities. Cities 127, 103747.

[29]

Mouratidis, K. , Poortinga, W. , 2020. Built environment, urban vitality and social cohesion: do vibrant neighborhoods foster strong communities? Landsc. Urban Plann. 204, 103951.

[30]

Nachmany, H. , Hananel, R. , 2022. The Fourth Generation: urban renewal policies in the service of private developers. Habitat Int. 125, 102580.

[31]

Ogawa, Y. , Oki, T. , Zhao, C. , Sekimoto, Y. , Shimizu, C. , 2024. Evaluating the subjective perceptions of streetscapes using street-view images. Landsc. Urban Plann. 247, 105073.

[32]

Tao, Y. , Wang, Y. , Wang, X. , Tian, G. , Zhang, S. , 2022. Measuring the correlation between human activity density and streetscape perceptions: an analysis based on Baidu street view images in zhengzhou, China. Land 11 (3), 400.

[33]

Tian, H. , Han, Z. , Xu, W. , Liu, X. , Qiu, W. , Li, W. , 2021. Evolution of historical urban landscape with computer vision and machine learning: a case study of Berlin. J. Digit. Landsc. Archit. 6, 436- 451.

[34]

Wang, L. , Hou, C. , Zhang, Y. , He, J. , 2024. Measuring solar radiation and spatio-temporal distribution in different street network direction through solar trajectories and street view images. Int. J. Appl. Earth Obs. Geoinf. 132, 104058.

[35]

Wei, J. , Yue, W. , Li, M. , Gao, J. , 2022. Mapping human perception of urban landscape from street-view images: a deeplearning approach. Int. J. Appl. Earth Obs. Geoinf. 112, 102886.

[36]

Wu, J. , Lu, Y. , Gao, H. , Wang, M. , 2022. Cultivating historical heritage area vitality using urban morphology approach based on big data and machine learning. Comput. Environ. Urban Syst. 91, 101716.

[37]

Wu, Z. , Ye, Z. , 2016. Research on urban spatial structure based on Baidu heat map: a case study on the central city of Shanghai. City Plan. Rev. 40 (4), 33- 40.

[38]

Yang, Y. , Wang, Q. , Wu, D. , Hang, T. , Ding, H. , Wu, Y. , Liu, Q. , 2024. Constructing child-friendly cities: comprehensive evaluation of street-level child-friendliness using the method of empathy-based stories, street view images, and deep learning. Cities 154, 105385.

[39]

Yang, Z. , Pan, Y. , 2020. Are cities losing their vitality? Exploring human capital in Chinese cities. Habitat Int. 96, 102104.

[40]

Yang, C. , Xu, F. , Jiang, L. , Wang, R. , Yin, L. , Zhao, M. , Zhang, X. , 2021. Approach to Quantify Spatial Comfort of Urban Roads based on Street View Images. J. Geo-info. Sci. 23 (5), 785- 801.

[41]

Ye, L. , Peng, X. , Aniche, L.Q. , Scholten, P.H. , Ensenado, E.M. , 2021. Urban renewal as policy innovation in China: from growth stimulation to sustainable development. Publ. Adm. Dev. 41 (1), 23- 33.

[42]

Yin, S. , Guo, X. , Jiang, J. , 2022. Extracting the urban landscape features of the historic district from street view images based on deep learning: a case study in the Beijing core area. ISPRS Int. J. GeoInf. 11 (6), 326.

[43]

Yu, F. , 2015. Multi-scale context aggregation by dilated convolutions arXiv preprint arXiv: 1511.07122.

[44]

Zagoruyko, S. , 2016. Wide residual networks arXiv preprint arXiv: 1605.07146.

[45]

Zeng, C. , Song, Y. , He, Q. , Shen, F. , 2018. Spatially explicit assessment on urban vitality: case studies in Chicago and Wuhan. Sustain. Cities Soc. 40, 296- 306.

[46]

Zhang, A. , Li, W. , Wu, J. , Lin, J. , Chu, J. , Xia, C. , 2021. How can the urban landscape affect urban vitality at the street block level? A case study of 15 metropolises in China. Environ. Plan. B Urban Anal. City Sci. 48 (5), 1245- 1262.

[47]

Zhang, B. , Fan, J. , Zhang, P. , Shen, S. , Ren, Y. , 2024. The Changsha historic urban area: a study on the evolution characteristics and influencing factors of the connectivity of construction land. Herit. Sci. 12 (1), 287.

[48]

Zhang, J. , Zhang, K. , Zhao, F. , 2020. Research on the regional spatial effects of green development and environmental governance in China based on a spatial autocorrelation model. Struct. Change Econ. Dynam. 55, 1- 11.

[49]

Zhang, L. , Pei, T. , Chen, Y. , Song, C. , Liu, X. , 2019. A review of urban environmental assessment based on street view images. J. Geo-Inf. Sci. 21, 46- 58.

[50]

Zhang, W. , Zhang, X. , Wu, G. , 2021. The network governance of urban renewal: a comparative analysis of two cities in China. Land Use Policy 106, 105448.

[51]

Zhang, Y. , Dong, W. , 2021. Determining minimum intervention in the preservation of heritage buildings. Int. J. Architect. Herit. 15 (5), 698- 712.

[52]

Zhang, Y. , Han, Y. , 2022. Vitality evaluation of historical and cultural districts based on the values dimension: districts in Beijing City, China. Herit. Sci. 10 (1), 137.

[53]

Zhou, Q. , Zheng, Y. , 2024. Evaluation research on the spatial vitality of Huaihe road commercial block in Hefei city based on multi-source data correlation. Sustainability 16 (8), 3372.

[54]

Zipp, S. , 2013. The roots and routes of urban renewal. J. Urban Hist. 39 (3), 366- 391.

RIGHTS & PERMISSIONS

The Author(s). Publishing services by Elsevier B.V. on behalf of Higher Education Press and KeAi.

AI Summary AI Mindmap
PDF (12677KB)

351

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/