Urban vitality transfer: Analysis of 50 factors based on 24-h weekday activity in Nanjing

Zhenyu Wang , Weixing Xu , Yida Liu , Beibei Liu , Ling Zhu

Front. Archit. Res. ›› 2025, Vol. 14 ›› Issue (5) : 1249 -1273.

PDF (7580KB)
Front. Archit. Res. ›› 2025, Vol. 14 ›› Issue (5) : 1249 -1273. DOI: 10.1016/j.foar.2025.03.003
RESEARCH ARTICLE

Urban vitality transfer: Analysis of 50 factors based on 24-h weekday activity in Nanjing

Author information +
History +
PDF (7580KB)

Abstract

Vitality transfer patterns are essential for creating vibrant, sustainable cities, yet their dynamic changes over time remain underexplored. Taking Nanjing as a case study, this study employed 24 h of location-based service data as a time series to explore the vitality transfer pattern within a day from both distribution and aggregation perspectives. Spatial dependence decay patterns were detected using residual clustering relationships, and the LightGBM model was used to explore the relationship between vitality transfer and 50 factors in five categories: transportation, function, economy, morphology, and geography. The results show that the urban vitality distribution has a polycentric agglomeration pattern, which goes through four periods in a day. Vitality transfer is the cyclical process of transformation from one aggregated state to another. The spatial dependence was maximized at 0.75 km2. The magnitude of vitality fluctuation is strongly influenced by factors such as morphology, transportation, and function. Spatial differences in factors combine to drive vitality transfer in distribution and aggregation, with factors such as accessibility and building age diversity influencing distribution, and factors such as accessibility and POI diversity altering aggregation. This study supports the rational design of vibrant urban spaces and promotes effective vitality transfer and sustainable urban development.

Keywords

Sustainability / Urban vitality transfer / Spatial effects decay laws / Machine learning / Big data / Nanjing

Cite this article

Download citation ▾
Zhenyu Wang, Weixing Xu, Yida Liu, Beibei Liu, Ling Zhu. Urban vitality transfer: Analysis of 50 factors based on 24-h weekday activity in Nanjing. Front. Archit. Res., 2025, 14(5): 1249-1273 DOI:10.1016/j.foar.2025.03.003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anselin, L. , 1995. Local indicators of spatial association—LISA. Geogr. Anal. 27 (2), 93- 115.

[2]

Anselin, L. , 1998. Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics. Handbook of Applied Economic Statistics.

[3]

Batty, M. , 2007. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. The MIT Press.

[4]

Batty, M. , 2008. The size, scale, and Shape of cities. Science 319 (5864), 769- 771.

[5]

Boessen, A. , Hipp, J.R. , Butts, C.T. , Nagle, N.N. , Smith, E.J. , 2018. The built environment, spatial scale, and social networks: do land uses matter for personal network structure? Environ. Plan. B Urban Anal. City Sci. 45 (3), 400- 416.

[6]

Braun, L.M. , Malizia, E. , 2015. Downtown vibrancy influences public health and safety outcomes in urban counties. J. Transport Health 2 (4), 540- 548.

[7]

Breiman, L. , 2001. Random forests. Mach. Learn. 45, 5- 32.

[8]

Cao, R. , Tu, W. , Yang, C. , Li, Q. , Liu, J. , Zhu, J. , Zhang, Q. , Li, Q. , Qiu, G. , 2020. Deep learning-based remote and social sensing data fusion for urban region function recognition. ISPRS J. Photogrammetry Remote Sens. 163, 82- 97.

[9]

Caprotti, F. , Cowley, R. , Datta, A. , Broto, V.C. , Gao, E. , Georgeson, L. , et al., 2017. The New Urban Agenda: key opportunities and challenges for policy and practice. Urban Research & Practice 10 (3), 367- 378.

[10]

Caruana, R. , Niculescu-Mizil, A. , 2006. An empirical comparison of supervised learning algorithms. Proceedings of the 23rd International Conference on Machine Learning, pp. 161-168.

[11]

Carlucci, M. , Zambon, I. , Salvati, L. , 2020. Diversification in urban functions as a measure of metropolitan complexity. Environ. Plan. B Urban Anal. City Sci. 47 (7), 1289- 1305.

[12]

Chen, T. , Guestrin, C. , 2016. Xgboost: a scalable tree boosting system. Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining 785-794.

[13]

Chen, E. , Ye, Z. , 2021. Identifying the nonlinear relationship between free-floating bike sharing usage and built environment. J. Clean. Prod. 280, 124281.

[14]

Chen, Z. , Gong, Z. , Yang, S. , Ma, Q. , Kan, C. , 2020. Impact of extreme weather events on urban human flow: a perspective from location-based service data. Comput. Environ. Urban Syst. 83, 101520.

[15]

Chen, Y. , Yu, B. , Shu, B. , Yang, L. , Wang, R. , 2023. Exploring the spatiotemporal patterns and correlates of urban vitality: temporal and spatial heterogeneity. Sustain. Cities Soc. 91, 104440.

[16]

Chollet, F. , Chollet, F. , 2021. Deep Learning with Python. Simon& Schuster.

[17]

Cliff, A.D. , Ord, K. , 1970. Spatial autocorrelation: a review of existing and new measures with applications. Econ. Geogr. 46(Suppl. 1), 269- 292.

[18]

Cortes, C. , 1995. Support-vector networks. Mach. Learn. 20, 273- 297.

[19]

Cörvers, F. , Mayhew, K. , 2021. Regional inequalities: causes and cures. Oxf. Rev. Econ. Pol. 37 (1), 1- 16.

[20]

Ding, C. , Cao, X. , Yu, B. , Ju, Y. , 2021. Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity. Transport. Res. Pol. Pract. 148, 22- 35.

[21]

Duranton, G. , Puga, D. , 2003. Micro-Foundations of Urban Agglomeration Economies(No. W9931. National Bureau of Economic Research, Cambridge, MA, w9931.

[22]

Fingleton, B. , Le Gallo, J. , 2008. Estimating spatial models with endogenous variables, a spatial lag and spatially dependent disturbances: finite sample properties. Pap. Reg. Sci. 87 (3), 319- 340.

[23]

Florida, R. , 2003. Cities and the creative class. City Community 2 (1), 3- 19.

[24]

Fotheringham, A.S. , O’Kelly, M.E. , 1989. Spatial Interaction Models: Formulations and Applications(Vol. 1). Kluwer Academic Publishers, Dordrecht.

[25]

Fry, D. , Mooney, S.J. , Rodriguez, D.A. , Caiaffa, W.T. , Lovasi, G.S. , 2020. Assessing Google street view image availability in Latin American cities. J. Urban Health 97 (4), 552- 560.

[26]

Fujita, M. , Krugman, P.R. , Venables, A. , 2001. The Spatial Economy: Cities, Regions, and International Trade. MIT press.

[27]

Gehl, J. , 2013. Cities for People. Island press.

[28]

Getis, A. , Ord, J.K. , 1992. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24 (3), 189- 206.

[29]

Globalization and World Cities Research Network , 2023. Detailed Pedia. Retrieved April 16, 2023, from https://detailedpedia.com/wiki-Globalization_and_World_Cities_Research_Network.

[30]

Gómez-Varo, I. , Delclòs-Alió X. , Miralles-Guasch, C. , 2022. Jane Jacobs reloaded: a contemporary operationalization of urban vitality in a district in Barcelona. Cities 123.

[31]

Gong, H. , Wang, X. , Wang, Z. , Liu, Z. , Li, Q. , Zhang, Y. , 2022. How did the built environment affect urban vibrancy? A big data approach to post-Disaster revitalization assessment. Int. J. Environ. Res. Publ. Health 19 (19), 12178.

[32]

Grekousis, G. , 2019. Artificial neural networks and deep learning in urban geography: a systematic review and meta-analysis. Comput. Environ. Urban Syst. 74, 244- 256.

[33]

Haaland, C. , van Den Bosch, C.K. , 2015. Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban For. Urban Green. 14 (4), 760- 771.

[34]

He, Q. , He, W. , Song, Y. , Wu, J. , Yin, C. , Mou, Y. , 2018. The impact of urban growth patterns on urban vitality in newly built-up areas based on an association rules analysis using geographical ‘big data.’. Land Use Policy 78, 726- 738.

[35]

Hillier, W.R.G. , Yang, T. , Turner, A. , 2012. Normalising least angle choice in Depthmap-and how it opens up new perspectives on the global and local analysis of city space. Journal of Space Syntax 3 (2), 155- 193.

[36]

Huang, H. , Yao, X.A. , Krisp, J.M. , Jiang, B. , 2021. Analytics of location-based big data for smart cities: opportunities, challenges, and future directions. Comput. Environ. Urban Syst. 90, 101712.

[37]

Huang, X. , Gong, P. , Wang, S. , White, M. , Zhang, B. , 2022. Machine learning modeling of vitality characteristics in historical preservation zones with multi-source data. Buildings 12 (11), 1978.

[38]

Jacobs, J. , 2016. The Death and Life of Great American Cities. Vintage.

[39]

James, G. , Witten, D. , Hastie, T. , Tibshirani, R. , others , 2013. An Introduction to Statistical Learning, vol. 112. Springer.

[40]

Jia, C. , Liu, Y. , Du, Y. , Huang, J. , Fei, T. , 2021. Evaluation of urban vibrancy and its relationship with the economic landscape: a case study of Beijing. ISPRS Int. J. GeoInf. 10 (2), 72.

[41]

Jiang, Y. , Chen, Z. , Sun, P. , 2022. Urban shrinkage and urban vitality correlation research in the three northeastern Provinces of China. Int. J. Environ. Res. Publ. Health 19 (17), 10650.

[42]

Ke, G. , Meng, Q. , Finley, T. , Wang, T. , Chen, W. , Ma, W. , et al., 2018. LightGBM: a highly efficient gradient boosting decision tree.

[43]

Kim, Y.-L. , 2018. Seoul’s Wi-Fi hotspots: Wi-Fi access points as an indicator of urban vitality. Comput. Environ. Urban Syst. 72, 13- 24.

[44]

Kim, Y.-L. , 2019. Data-driven approach to characterize urban vitality: how spatiotemporal context dynamically defines Seoul’s nighttime. Int. J. Geogr. Inf. Sci. 34 (6), 1235- 1256.

[45]

Kim, Y.-L. , 2020. Data-driven approach to characterize urban vitality: how spatiotemporal context dynamically defines Seoul’s nighttime. Int. J. Geogr. Inf. Sci. 34 (6), 1235- 1256.

[46]

Kopczewska, K. , 2022. Spatial machine learning: new opportunities for regional science. Ann. Reg. Sci. 68 (3), 713- 755.

[47]

Lan, F. , Gong, X. , Da, H. , Wen, H. , 2020. How do population inflow and social infrastructure affect urban vitality? Evidence from 35 large-and medium-sized cities in China. Cities 100, 102454.

[48]

Li, M. , Shen, Z. , Hao, X. , 2016. Revealing the relationship between spatio-temporal distribution of population and urban function with social media data. Geojournal 81 (6), 919- 935.

[49]

Li, X. , Li, Y. , Jia, T. , Zhou, L. , Hijazi, I.H. , 2022. The six dimensions of built environment on urban vitality: fusion evidence from multi-source data. Cities 121, 103482.

[50]

Li, X. , Gong, P. , 2016. Urban growth models: progress and perspective. Sci. Bull.(Taipei) 61, 1637- 1650.

[51]

Liu, H. , Gou, P. , Xiong, J. , 2022. Vital triangle: a new concept to evaluate urban vitality. Comput. Environ. Urban Syst. 98, 101886.

[52]

Lu, S. , Shi, C. , Yang, X. , 2019. Impacts of built environment on urban vitality: regression analyses of Beijing and Chengdu, China. Int. J. Environ. Res. Publ. Health 16 (23), 4592.

[53]

Liaw, A. , Wiener, M. , 2002. Classification and regression by randomForest. R news 2 (3), 18- 22.

[54]

Lin, J. , Zhuang, Y. , Zhao, Y. , Li, H. , He, X. , Lu, S. , 2022. Measuring the non-linear relationship between three-dimensional built environment and urban vitality based on a random forest model. Int. J. Environ. Res. Publ. Health 20 (1), 734.

[55]

Liu, Y. , Wang, H. , Jiao, L. , Liu, Y. , He, J. , Ai, T. , 2015. Road centrality and landscape spatial patterns in Wuhan Metropolitan Area, China. Chin. Geogr. Sci. 25 (4), 511- 522.

[56]

Liu, S. , Zhang, L. , Long, Y. , 2019. Urban vitality area identification and pattern analysis from the perspective of time and space fusion. Sustainability 11 (15), 4032.

[57]

Mandelbrot, B. , Gomory, R. , 1997. Fractals and Scaling in Finance:Discontinuity, Concentration, Risk. Springer.

[58]

Ming, Y. , Liu, Y. , Liu, X. , 2022. Spatial pattern of anthropogenic heat flux in monocentric and polycentric cities: the case of Chengdu and Chongqing. Sustain. Cities Soc. 78, 103628.

[59]

Perry, C. , 2015. The neighborhood unit. In: The City Reader. Routledge, pp. 607-619.

[60]

Rey, S.J. , Anselin, L. , 2007. PySAL: a Python library of spatial analytical methods. Rev. Reg. Stud. 37 (1), 5- 27.

[61]

Sassen, S. , 2013. The Global City. Princeton University Press, New york, london, Tokyo.

[62]

Shannon, C.E. , 1948. A mathematical theory of communication. The Bell System Technical Journal 27 (3), 379- 423.

[63]

Shi, Y. , Zheng, J. , Pei, X. , 2023. Measurement method and influencing mechanism of urban subdistrict vitality in Shanghai based on multisource data. Remote Sens. 15 (4), 932.

[64]

Simmie, J. , Martin, R. , 2010. The economic resilience of regions:towards an evolutionary approach. Camb. J. Reg. Econ. Soc. 3 (1), 27- 43.

[65]

Song, Y. , Long, Y. , Wu, P. , Wang, X. , 2018. Are all cities with similar urban form or not? Redefining cities with ubiquitous points of interest and evaluating them with indicators at city and block levels in China. Int. J. Geogr. Inf. Sci. 32 (12), 2447- 2476.

[66]

Storper, M. , Venables, A.J. , 2004. Buzz: face-to-face contact and the urban economy. J. Econ. Geogr. 4 (4), 351- 370.

[67]

Sulis, P. , Manley, E. , Zhong, C. , Batty, M. , 2018. Using mobility data as proxy for measuring urban vitality. Journal of Spatial Information Science(16), 137- 162.

[68]

Sung, H. , Lee, S. , 2015. Residential built environment and walking activity: empirical evidence of Jane Jacobs’ urban vitality. Transport. Res. Transport Environ. 41, 318- 329.

[69]

Tang, J. , Long, Y. , 2019. Measuring visual quality of street space and its temporal variation: methodology and its application in the Hutong area in Beijing. Landsc. Urban Plann. 191, 103436.

[70]

Tang, S. , Ta, N. , 2022. How the built environment affects the spatiotemporal pattern of urban vitality: a comparison among different urban functional areas. Computational Urban Science 2 (1), 39.

[71]

Tu, W. , Zhu, T. , Xia, J. , Zhou, Y. , Lai, Y. , Jiang, J. , Li, Q. , 2020. Portraying the spatial dynamics of urban vibrancy using multisource urban big data. Comput. Environ. Urban Syst. 80, 101428.

[72]

Walk Score Methodology , 2023. Walk Score Methodology. Retrieved February 24, 2023, from Walk Score website.

[73]

Wang, J. , Biljecki, F. , 2022. Unsupervised machine learning in urban studies: a systematic review of applications. Cities 129, 103925.

[74]

Wang, W. , Hei, M. , Peng, F. , Li, J. , Chen, S. , Huang, Y. , Feng, Z. , 2023. Development of “air-ground data fusion” based LiDAR method: towards sustainable preservation and utilization of multiple-scaled historical blocks and buildings. Sustain. Cities Soc. 91, 104414.

[75]

Wang, Z. , Wang, X. , Liu, Y. , Zhu, L. , 2024. Identification of 71 factors influencing urban vitality and examination of their spatial dependence: a comprehensive validation applying multiple machine-learning models. Sustain. Cities Soc. 108, 105491.

[76]

Wu, C. , Ye, X. , Ren, F. , Du, Q. , 2018. Check-in behaviour and spatio-temporal vibrancy: an exploratory analysis in Shenzhen, China. Cities 77, 104- 116.

[77]

Wu, W. , Niu, X. , 2019. Influence of built environment on urban vitality: case study of Shanghai using mobile phone location data. J. Urban Plann. Dev. 145 (3), 04019007.

[78]

Wu, Y. , Wang, L. , Fan, L. , Yang, M. , Zhang, Y. , Feng, Y. , 2020. Comparison of the spatiotemporal mobility patterns among typical subgroups of the actual population with mobile phone data: a case study of Beijing. Cities 100, 102670.

[79]

Wu, J. , Lu, Y. , Gao, H. , Wang, M. , 2022. Cultivating historical heritage area vitality using urban morphology approach based on big data and machine learning. Comput. Environ. Urban Syst. 91, 101716.

[80]

Xia, C. , Zhang, A. , Yeh, A.G.O. , 2022. The Varying relationships between multidimensional urban form and urban vitality in Chinese megacities: insights from a comparative analysis. Ann. Assoc. Am. Geogr. 112 (1), 141- 166.

[81]

Xiao, Z. , Li, C. , Pan, S. , Wei, G. , Tian, M. , Hu, R. , 2022. Exploring the spatial impact of multisource data on urban vitality: a causal machine learning method. Wireless Commun. Mobile Comput. 2022, 1- 24.

[82]

Yang, Y. , Wang, H. , Qin, S. , Li, X. , Zhu, Y. , Wang, Y. , 2022. Analysis of urban vitality in Nanjing based on a plot Boundary-based neural network weighted regression model. ISPRS Int. J. GeoInf. 11 (12), 624.

[83]

Ye, Y. , Li, D. , Liu, X. , 2017. How block density and typology affect urban vitality: an exploratory analysis in Shenzhen, China. Urban Geogr. 39 (4), 631- 652.

[84]

Zeng, P. , Wei, M. , Liu, X. , 2020. Investigating the spatiotemporal dynamics of urban vitality using bicycle-sharing data. Sustainability 12 (5), 1714.

[85]

Zhang, A. , Li, W. , Wu, J. , Lin, J. , Chu, J. , Xia, C. , 2021. How can the urban landscape affect urban vitality at the street block level? A case study of 15 metropolises in China. Environ. Plan. B Urban Anal. City Sci. 48 (5), 1245- 1262.

[86]

Zhang, Z. , Zhang, Y. , He, T. , Xiao, R. , 2022. Urban vitality and its influencing factors: comparative analysis based on taxi trajectory data. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 15, 5102- 5114.

RIGHTS & PERMISSIONS

The Author(s). Publishing services by Elsevier B.V. on behalf of Higher Education Press and KeAi.

AI Summary AI Mindmap
PDF (7580KB)

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/