Coupling coordination evaluation and driving factor analysis of economic performance and social equity in rail transit station areas

Tianyue Wan , Wei Lu , Liang Wu , Wenzhi Rong

Front. Archit. Res. ›› 2025, Vol. 14 ›› Issue (5) : 1450 -1470.

PDF (2327KB)
Front. Archit. Res. ›› 2025, Vol. 14 ›› Issue (5) : 1450 -1470. DOI: 10.1016/j.foar.2025.02.003
RESEARCH ARTICLE

Coupling coordination evaluation and driving factor analysis of economic performance and social equity in rail transit station areas

Author information +
History +
PDF (2327KB)

Abstract

Transit-oriented development (TOD) is increasingly recognized as a key strategy for enhancing transportation efficiency, environmental sustainability, and economic vitality while fostering inclusive communities in dense, multifunctional urban areas. However, the relationship between TOD's economic benefits and social equity remains underexplored. This study critically evaluates TOD in Dalian, China, introducing the expanded Node-Place-Economy (NPE) model, which integrates economic and social dimensions into the traditional Node-Place model. The NPE model offers a comprehensive framework for assessing TOD effectiveness, particularly in balancing economic growth and equitable resource distribution. The research highlights significant disparities between central and peripheral regions, with central areas performing better in both economic and social equity, while peripheral areas exacerbate socio-economic inequalities. Through spatial analysis and the Coupling Coordination Index (CCI), the study identifies factors influencing the synergy between economic vitality and social equity, such as the density of commercial, sports, and entertainment facilities. The findings emphasize the need for more equitable TOD planning, suggesting that future urban developments should prioritize social inclusiveness alongside economic efficiency. This research expands the theoretical foundation of TOD and offers practical insights for urban planners aiming to achieve sustainable and inclusive urban development.

Keywords

Rail transit station areas / Transit-oriented development / Economic performance / Social equity / Coupling coordination index / Driving factors

Cite this article

Download citation ▾
Tianyue Wan, Wei Lu, Liang Wu, Wenzhi Rong. Coupling coordination evaluation and driving factor analysis of economic performance and social equity in rail transit station areas. Front. Archit. Res., 2025, 14(5): 1450-1470 DOI:10.1016/j.foar.2025.02.003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmed, Q.I. , Lu, H. , Ye, S. , 2008. Urban transportation and equity:a case study of Beijing and Karachi. Transport. Res. Pol. Pract. 42 (1), 125- 139.

[2]

Ann, S. , Yamamoto, T. , Jiang, M. , 2019. Re-examination of the standards for transit oriented development influence zones in India. J. Transport. Land Use 12 (1), 679- 700.

[3]

Anselin, L. , Getis, A. , 2010. Spatial statistical analysis and geographic information systems. In:Anselin, L., Rey, S.J. (Eds.), Perspectives on Spatial Data Analysis. Springer, pp. 35-47.

[4]

Banister, D. , 2018. Inequality in Transport. Alexandrine Press.

[5]

Beaudoin, J. , Lin Lawell, C. , 2016. Is Public Transit's "Green" Reputation Deserved?:Evaluating the Effects of Transit Supply on Air Quality. University of California at Davis Working Paper.

[6]

Boniface, S. , Scantlebury, R. , Watkins, S.J. , Mindell, J.S. , 2015. Health implications of transport:evidence of effects of transport on social interactions. J. Transport Health 2 (3), 441- 446.

[7]

Calthorpe, P. , 1993. The Next American Metropolis:Ecology, Community, and the American Dream. Princeton Architectural Press.

[8]

Calvo, F. , De On˜a, J. , Arán F. , 2013. Impact of the Madrid subway on population settlement and land use. Land Use Policy 31 (1), 627- 639.

[9]

Cao, X. , 2016. How does neighborhood design affect life satisfaction? Evidence from Twin Cities. Travel Behaviour and Society 5, 68- 76.

[10]

Cao, Z. , Asakura, Y. , Tan, Z. , 2020. Coordination between node, place, and ridership:comparing three transit operators in Tokyo. Transport. Res. Transport Environ. 87, 102518.

[11]

Cappellano, F. , Spisto, A. , 2014. Transit oriented development & social equity:from mixed use to mixed framework. AEF 11, 314- 322.

[12]

Caset, F. , Blainey, S. , Derudder, B. , Boussauw, K. , Witlox, F. , 2020. Integrating node-place and trip end models to explore drivers of rail ridership in Flanders, Belgium. J. Transport Geogr. 87, 102796.

[13]

Cervero, R. , Murakami, J. , 2009. Rail and property development in Hong Kong:experiences and extensions. Urban Stud. 46 (9), 2019- 2043.

[14]

Chen, Z. , Li, P. , Jin, Y. , Bharule, S. , Jia, N. , Li, W. , Song, X. , Shibasaki, R. , Zhang, H. , 2023. Using mobile phone big data to identify inequity of aging groups in transit-oriented development station usage:a case of Tokyo. Transp. Policy 132, 65- 75.

[15]

Cooke, L.P. , 2009. Gender equity and fertility in Italy and Spain. J. Soc. Pol. 38, 123- 140.

[16]

Coucke, W. , 2023. Strategic urban planning in the Paris metropolitan region:a historic overview of the applied instruments. Available at Researchgate, Article No. 373439770.

[17]

Cummings, C. , Mahmassani, H. , 2022. Does intercity rail station placement matter? Expansion of the node-place model to identify station location impacts on Amtrak ridership. J. Transport Geogr. 99, 103278.

[18]

Dawkins, C. , Moeckel, R. , 2016. Transit-induced gentrification:who will stay, and who will go? Housing Policy Debate 26 (4-5), 801- 818.

[19]

Delmelle, E.C. , 2021. Transit-induced gentrification and displacement:the state of the debate. In:Advances in Transport Policy and Planning. Elsevier, pp. 173-190.

[20]

Dou, M. , Wang, Y. , Dong, S. , 2021. Integrating network centrality and node-place model to evaluate and classify station areas in Shanghai. ISPRS Int. J. GeoInf. 10 (6), 414.

[21]

Du, H. , Mulley, C. , 2007. The short-term land value impacts of urban rail transit:quantitative evidence from Sunderland, UK. Land Use Policy 24, 223- 233.

[22]

Dwight, M. , 2017. Tools for equitable TOD (eTOD):improving outcomes along transit in the chicagoland. MUP Capstone 14- 21.

[23]

Ermagun, A. , Tilahun, N. , 2020. Equity of transit accessibility across Chicago. Transport. Res. Transport Environ. 86, 102461.

[24]

Ewing, R. , Sabouri, S. , Kaniewska, J. , Ameli, H. , Yang, W. , Kiani, F. , Kim, J. , Chibamba, D. , 2022. Is transit-oriented development affordable for low and moderate income households?.

[25]

Ferm, J. , Trigo, S.F. , Moore-Cherry, N. , 2022. Documenting the "soft spaces" of London planning:opportunity Areas as institutional fix in a growth-oriented city. Reg. Stud. 56 (3), 394- 405.

[26]

Guo, S. , Pei, T. , Wang, X. , Song, C. , Chen, X. , Chen, J. , Shu, H. , Liu, Y. , Wu, M. , 2022. Equity of subway accessibility:a perspective from work commute trips. Transport. Res. Transport Environ. 113, 103515.

[27]

Han, D. , Yu, D. , Qiu, J. , 2023. Assessing coupling interactions in a safe and just operating space for regional sustainability. Nat. Commun. 14, 1369.

[28]

Harrison, P. , Rubin, M. , Appelbaum, A. , Dittgen, R. , 2019. Corridors of freedom:analyzing Johannesburg's ambitious inclusionary transit-oriented development. J. Plann. Educ. Res. 39, 456- 468.

[29]

He, S.Y. , Tao, S. , Cheung, Y.H.Y. , Puczkowskyj, N. , Lin, Z. , 2021. Transit-oriented development, perceived neighborhood gentrification and sense of community:a case study of Hong Kong. Case Studies on Transport Policy 9, 555- 566.

[30]

He, Z. , Deng, M. , Xie, Z. , Wu, L. , Chen, Z. , Pei, T. , 2020. Discovering the joint influence of urban facilities on crime occurrence using spatial co-location pattern mining. Cities 99, 102612.

[31]

Hwang, J. , 2016. The social construction of a gentrifying neighborhood:reifying and redefining identity and boundaries in inequality. Urban Aff. Rev. 52, 98- 128.

[32]

Ichinose, T. , Fujita, R. , Izumiyama, R. , Uozaki, K. , 2023. The "Area-Based Vision" initiative and developed with the following considerations and trends in efforts to realize the future vision:based on the analysis of the items and composition of the Area-Based Vision listing. Reports of the City Planning Institute of Japan 21 (4), 543- 549.

[33]

Immergluck, D. , Balan, T. , 2017. Sustainable for whom? Green urban development, environmental gentrification, and the Atlanta Beltline. Urban Geogr. 39 (4), 546- 562.

[34]

Isalou, A.A. , Litman, T. , Shahmoradi, B. , 2014. Testing the housing and transportation affordability index in a developing world context:a sustainability comparison of central and suburban districts in Qom, Iran. Transp. Policy 33, 33- 39.

[35]

Kim, H. , Sultana, S. , Weber, J. , 2018. A geographic assessment of the economic development impact of Korean high-speed rail stations. Transp. Policy 66, 127- 137.

[36]

Li, P. , Zhang, H. , Li, W. , Yu, K. , Bashir, A.K. , AlZubi, A.A. , Chen, J. , Song, X. , Shibasaki, R. , 2023. IIoT based trustworthy demographic dynamics tracking with advanced Bayesian learning. IEEE Transactions on Network Science and Engineering 10, 2745- 2754.

[37]

Li, Y. , Li, Y. , Zhou, Y. , Shi, Y. , Zhu, X. , 2012. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 98, 127- 133.

[38]

Li, Z. , Han, Z. , Xin, J. , Luo, X. , Su, S. , Weng, M. , 2019. Transit oriented development among metro station areas in Shanghai, China:variations, typology, optimization and implications for land use planning. Land Use Policy 82, 269- 282.

[39]

Liang, P. , Cui, X. , Lin, M. , Yang, T. , Wu, B. , 2022. High-speed rail effects on station area-level business commercial agglomeration:evidence from 110 stations in China. Front. Environ. Sci. 10, 1045959.

[40]

Liao, C. , Scheuer, B. , 2022. Evaluating the performance of transitoriented development in Beijing metro station areas:integrating morphology and demand into the node-place model. J. Transport Geogr. 100, 103333.

[41]

Lin, D. , Broere, W. , Cui, J. , 2022. Metro systems and urban development:impacts and implications. Tunn. Undergr. Space Technol. 125, 104509.

[42]

Liu, L. , Zhang, M. , Xu, T. , 2020. A conceptual framework and implementation tool for land use planning for corridor transit oriented development. Cities 107, 102939.

[43]

Lyu, G. , Bertolini, L. , Pfeffer, K. , 2016. Developing a TOD typology for Beijing metro station areas. J. Transport Geogr. 55, 40- 50.

[44]

Mouratidis, K. , 2021. Urban planning and quality of life:a review of pathways linking the built environment to subjective well--being. Cities 115, 103229.

[45]

OneNYC 2050 , 2019. NYC mayor's office of climate and Environ. Justice.

[46]

Padeiro, M. , Louro, A. , da Costa, N.M. , 2019. Transit-oriented development and gentrification:a systematic review. Transp. Rev. 39 (6), 733- 754.

[47]

Park, K. , Ewing, R. , Scheer, B.C. , Tian, G. , 2018. The impacts of built environment characteristics of rail station areas on household travel behavior. Cities 74, 277- 283.

[48]

Pezeshknejad, P. , Monajem, S. , Mozafari, H. , 2020. Evaluating sustainability and land use integration of BRT stations via extended node place model, an application on BRT stations of Tehran. J. Transport Geogr. 82, 102626.

[49]

Phani Kumar, P. , Ravi Sekhar, Ch , Parida M. , 2020. Identification of neighborhood typology for potential transit-oriented development. Transport. Res. Transport Environ. 78, 102186.

[50]

Renne, J.L. , Tolford, T. , Hamidi, S. , Ewing, R. , 2016. The cost and affordability paradox of transit-oriented development:a comparison of housing and transportation costs across transit-oriented development, hybrid and transit-adjacent development station typologies. Housing Policy Debate 26, 819- 834.

[51]

Revington, N. , 2015. Gentrification, transit, and land use:moving beyond neoclassical theory. Geography Compass 9, 152- 163.

[52]

Schenkman, S. , Bousquat, A. , 2021. From income inequality to social inequity:impact on health levels in an international efficiency comparison panel. BMC Public Health 21, 688.

[53]

Serra-Coch, G. , Chastel, C. , Campos, S. , Coch, H. , 2018. Graphical approach to assess urban quality:mapping walkability based on the TOD-standard. Cities 76, 58- 71.

[54]

Shao, Q. , Zhang, W. , Cao, X. , Yang, J. , Yin, J. , 2020. Threshold and moderating effects of land use on metro ridership in Shenzhen:implications for TOD planning. J. Transport Geogr. 89, 102878.

[55]

Silva, C. , Cadima, C. , Castro, N. , Tennøy, A. , 2021. Public transport strategy:minimal service vs. competitor to the car. Journal of Transport and Land Use 14 (1), 1275- 1294.

[56]

Singer, M.E. , Cohen-Zada, A.L. , Martens, K. , 2022. Core versus periphery:examining the spatial patterns of insufficient accessibility in U. S. metropolitan areas. J. Transport Geogr. 100, 103321.

[57]

Singh, Y.J. , Lukman, A. , Flacke, J. , Zuidgeest, M. , Van Maarseveen, M.F.A.M. , 2017. Measuring TOD around transit nodes-towards TOD policy. Transp. Policy 56, 96- 111.

[58]

Su, S. , Wang, Z. , Li, B. , Kang, M. , 2022a. Deciphering the influence of TOD on metro ridership:an integrated approach of extended node-place model and interpretable machine learning with planning implications. J. Transport Geogr. 104, 103455.

[59]

Su, S. , Zhang, H. , Wang, M. , Weng, M. , Kang, M. , 2021. Transitoriented development (TOD) typologies around metro station areas in urban China:a comparative analysis of five typical megacities for planning implications. J. Transport Geogr. 90, 102939.

[60]

Su, S. , Zhao, C. , Zhou, H. , Li, B. , Kang, M. , 2022b. Unraveling the relative contribution of TOD structural factors to metro ridership:a novel localized modeling approach with implications on spatial planning. J. Transport Geogr. 100, 103308.

[61]

Thomas, R. , Bertolini, L. , 2017. Defining critical success factors in TOD implementation using rough set analysis. Journal of Transport and Land Use 10 (1), 139- 154.

[62]

Vale, D.S. , 2015. Transit-oriented development, integration of land use and transport, and pedestrian accessibility:combining node-place model with pedestrian shed ratio to evaluate and classify station areas in Lisbon. J. Transport Geogr. 45, 70- 80.

[63]

Vale, D.S. , Viana, C.M. , Pereira, M. , 2018. The extended node-place model at the local scale:evaluating the integration of land use and transport for Lisbon's subway network. J. Transport Geogr. 69, 282- 293.

[64]

Vermeiren, K. , Verachtert, E. , Kasaija, P. , Loopmans, M. , Poesen, J. , Van Rompaey, A. , 2015. Who could benefit from a bus rapid transit system in cities from developing countries? A case study from Kampala, Uganda. J. Transport Geogr. 47, 13- 22.

[65]

Wang, Y. , Du, H. , Xu, Y. , Lu, D. , Wang, X. , Guo, Z. , 2018. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci. Total Environ. 631-632, 921-933.

[66]

Wang, Y. , Lu, D. , Levinson, D. , 2023. Equilibrium or imbalance? Rail transit and land use mix in station areas. Transportation 50, 2403- 2421.

[67]

Wegener, M. , Fuerst, F. , 2004. Land-use transport interaction:state of the art. SSRN.

[68]

Wu, L. , Cheng, X. , Kang, C. , Zhu, D. , Huang, Z. , Liu, Y. , 2020. A framework for mixed-use decomposition based on temporal activity signatures extracted from big geo-data. International Journal of Digital Earth 13, 708- 726.

[69]

Wu, Y. , Zheng, X. , Sheng, L. , You, H. , 2020. Exploring the equity and spatial evidence of educational facilities in Hangzhou, China. Soc. Indic. Res. 151, 1075- 1096.

[70]

Yang, J. , Zhu, L. , Duan, Y. , Zhou, J. , Ma, H. , 2020. Developing metro-based accessibility:three aspects of China's Rail+ Property practice. Transport. Res. Transport Environ. 81, 102288.

[71]

Yang, L. , Chen, Y. , Xu, N. , Zhao, R. , Chau, K.W. , Hong, S. , 2020. Place-varying impacts of urban rail transit on property prices in Shenzhen, China:insights for value capture. Sustain. Cities Soc. 58, 102140.

[72]

Yang, Y. , Zhong, C. , Gao, Q.-L. , 2022. An extended node-place model for comparative studies of transit-oriented development. Transport. Res. Transport Environ. 113, 103514.

[73]

Zhang, Y. , Marshall, S. , Manley, E. , 2019. Network criticality and the node-place-design model:classifying metro station areas in Greater London. J. Transport Geogr. 79, 102485.

[74]

Zhang, Y. , Zhu, T. , Guo, H. , Yang, X. , 2023. Analysis of the coupling coordination degree of the Society-EconomyResource-Environment system in urban areas:case study of the Jingjinji urban agglomeration, China. Ecol. Indic. 146, 109851.

[75]

Zhao, P. , Lu, B. , de Roo, G. , 2011. The impact of urban growth on commuting patterns in a restructuring city: evidence from Beijing. Pap. Reg. Sci. 90, 735- 754.

[76]

Zhao, Y. , Hu, S. , Zhang, M. , 2024. Evaluating equitable transit-oriented development (TOD) via the Node-Place-People model. Transport. Res. Pol. Pract. 185, 104116.

[77]

Zhou, H. , He, S. , Cai, Y. , Wang, M. , Su, S. , 2019. Social inequalities in neighborhood visual walkability:using street view imagery and deep learning technologies to facilitate healthy city planning. Sustain. Cities Soc. 50, 101605.

[78]

Zhou, M. , Zhou, J. , Zhou, J. , Lei, S. , Zhao, Z. , 2023. Introducing social contacts into the node-place model:a case study of Hong Kong. J. Transport Geogr. 107, 103532.

RIGHTS & PERMISSIONS

The Author(s). Publishing services by Elsevier B.V. on behalf of Higher Education Press and KeAi.

AI Summary AI Mindmap
PDF (2327KB)

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/