Application of machine learning and genetic algorithms in environmental performance assessment and optimization of traditional Huizhou houses in China

Zhixin Xu , Xiangfeng Li , Chenhao Duan , Xiaoming Li , Nan Jiang , Xijia Sun , Fan Xie

Front. Archit. Res. ›› 2025, Vol. 14 ›› Issue (6) : 1697 -1726.

PDF (8337KB)
Front. Archit. Res. ›› 2025, Vol. 14 ›› Issue (6) :1697 -1726. DOI: 10.1016/j.foar.2025.02.002
RESEARCH ARTICLE

Application of machine learning and genetic algorithms in environmental performance assessment and optimization of traditional Huizhou houses in China

Author information +
History +
PDF (8337KB)

Abstract

China's rapid urbanization presents significant challenges for rural construction and resource management, often prioritizing economic gains over climate adaptability and energy efficiency. This study focuses on traditional Huizhou houses, integrating energy consumption and comfort analysis into the early design stages. Initial simulations using the Universal Thermal Climate Index (UTCI) established a baseline model for comparison. Through the Wallacei_X plugin, optimized designs achieved a 19.88% reduction in energy use intensity (EUI) and a 9.37% improvement in summer outdoor comfort (UTCI_H) compared to the baseline. Further analysis along the Pareto frontier using Scikit-learn demonstrated high predictive accuracy with XGBoost (F1 scores: 0.80 for 4-side houses, 0.78 for 3-side houses). To enhance interpretability, SHapley Additive exPlanations (SHAP) analysis explored nonlinear relationships between design variables and building performance, while coupling analysis examined the spatial relationships between houses and their environmental impact. In the final validation, the proposed workflow effectively linked building performance prediction with design optimization, achieving a 26% performance improvement over the original site plan. This integrated approach enables rapid performance evaluations, reduces costs, and provides practical design references. It highlights the potential of combining genetic algorithms and machine learning to drive sustainable rural development.

Keywords

Traditional Huizhou houses / Machine learning / Genetic algorithms

Cite this article

Download citation ▾
Zhixin Xu, Xiangfeng Li, Chenhao Duan, Xiaoming Li, Nan Jiang, Xijia Sun, Fan Xie. Application of machine learning and genetic algorithms in environmental performance assessment and optimization of traditional Huizhou houses in China. Front. Archit. Res., 2025, 14(6): 1697-1726 DOI:10.1016/j.foar.2025.02.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdeen, A. , Mushtaha, E. , Hussien, A.A. , Ghenai, C. , Maksoud, A. , Belpoliti, V. , 2024. Simulation-based multi-objective genetic optimization for promoting energy efficiency and thermal comfort in existing buildings of hot climate. Res. Eng. 21, 101815.

[2]

Al-Taai, S.R. , Azize, N.M. , Thoeny, Z.A.R. , Imran, H. , Bernardo, L.F.A. , 2023. XGBoost prediction model optimized with Bayesian for the compressive strength of eco-friendly concrete containing ground granulated blast furnace slag and recycled coarse aggregate. Appl. Sci. 13 (15), 8889.

[3]

Anwar, G.A. , Zhang, X. , 2024. Deep reinforcement learning for intelligent risk optimization of buildings under hazard. Reliab. Eng. Syst. Saf. 247, 110118.

[4]

Azari, R. , Garshasbi, S. , Amini, P. , Rashed-Ali, H. , Mohammadi, Y. , 2016. Multi-objective optimization of building envelope design for life cycle environmental performance. Energy Build. 126, 524- 534.

[5]

Biresselioglu, M.E. , Demir, M.H. , 2022. Constructing a decision tree for energy policy domain based on real-life data. Energies 15 (7), 2420.

[6]

China Architecture & Building Press , 2024. GB/T50034-2024. Standard for Lighting Design of Buildings (Beijing, China).

[7]

China Architecture & Building Press , 2018. JGJ/T 449-2018. Green Performance Calculation Standard for Civil Buildings (Beijing, China).

[8]

Cao, P. , Sun, Q. , Li, H. , Jiao, Y. , 2024. Optimization analysis of an energy-saving renovation scheme for building envelopes of existing rural houses based on a comprehensive benefit evaluation. Buildings 14 (2), 454.

[9]

Cao, W. , Yang, L. , Zhang, Q. , Chen, L. , Wu, W. , 2021. Evaluation of rural dwellings' energy-saving retrofit with adaptive thermal comfort theory. Sustainability 13 (10), 5350.

[10]

Chen, W. , Wu, A.N. , Biljecki, F. , 2021. Classification of urban morphology with deep learning: application on urban vitality. Comput. Environ. Urban Syst. 90, 101706.

[11]

Cheng, F. , Cui, C. , Cai, W. , Zhang, X. , Ge, Y. , Li, B. , 2022. A novel data-driven air balancing method with energy-saving constraint strategy to minimize the energy consumption of ventilation system. Energy 239, 122146.

[12]

Deb, K. , Pratap, A. , Agarwal, S. , Meyarivan, T. , 2002. A fast and elitist multiobjective genetic algorithm: nsga-II. IEEE Trans. Evol. Comput. 6 (2), 182- 197.

[13]

Dong, Z. , Boyi, Q. , Pengfei, L. , Zhoujian, A. , 2021. Comprehensive evaluation and optimization of rural space heating modes in cold areas based on PMV-PPD. Energy Build. 246, 111120.

[14]

Fan, Y. , Zhao, X. , Li, J. , Li, G. , Myers, S. , et al., 2020. Economic and environmental analysis of a novel rural house heating and cooling system using a solar-assisted vapour injection heat pump. Appl. Energy 275, 115323.

[15]

Feng, G. , Wang, G. , Li, Q. , Zhang, Y. , Li, H. , 2022. Investigation of a solar heating system assisted by coupling with electromagnetic heating unit and phase change energy storage tank: towards sustainable rural buildings in northern China. Sustain. Cities Soc. 80, 103449.

[16]

Gagnon, D. , Crandall, C.G. , 2018. Sweating as a heat loss thermoeffector. Handb. Clin. Neurol. 156, 211- 232.

[17]

Gernaat, D.E.H.J. , de Boer, H.S. , Daioglou, V. , Yalew, S. , Müller, C. , van Vuuren, D.P. , 2021. Climate change impacts on renewable energy supply. Nat. Clim. Change 11 (2), 119- 125.

[18]

Gossard, D. , Lartigue, B. , Thellier, F. , 2013. Multi-objective optimization of a building envelope for thermal performance using genetic algorithms and artificial neural network. Energy Build. 67, 253- 260.

[19]

Grandchamp, E. , Abadi, M. , Alata, O. , 2016. A Pareto front approach for feature selection. In: Proceedings of the International Conference on Pattern Recognition Applications and Methods, pp. 334-342.

[20]

He, B.J. , Yang, L. , Ye, M. , 2014. Building energy efficiency in China rural areas: situation, drawbacks, challenges, corresponding measures and policies. Sustain. Cities Soc. 11, 7- 15.

[21]

He, X. , Gao, W. , Wang, R. , Yan, D. , 2022. Study on outdoor thermal comfort of factory areas during winter in hot summer and cold winter zone of China. Build. Environ. 228, 109883.

[22]

Hosamo, H. , Tingstveit, M.S. , Nielsen, H. , Svennevig, P.R. , Svidt, K. , 2022. Multiobjective optimization of building energy consumption and thermal comfort based on integrated BIM framework with machine learning-NSGA II. Energy Build. 277, 112479.

[23]

Hu, J. , Hu, F. , 2024. Research on multi-objective optimization of building energy efficiency based on energy consumption and thermal comfort. Build. Serv. Eng. Res. Tecnol. 45 (4), 391- 411.

[24]

Jani, D.B. , Mishra, M. , Sahoo, P.K. , 2015. Performance studies of hybrid solid desiccantevapor compression airconditioning system for hot and humid climates. Energy Build. 102, 284- 292.

[25]

Jannat, N. , Hussien, A. , Abdullah, B. , Cotgrave, A. , 2022. A comparative simulation study of the thermal performances of the building envelope wall materials in the tropics. Sustainability 12 (12), 4892.

[26]

Ke, H. , Gong, S. , He, J. , Zhang, L. , Mo, J. , 2022. A hybrid XGBoostSMOTE model for optimization of operational air quality numerical model forecasts. Front. Environ. Sci. 10, 1007530.

[27]

Lee, J.W. , Jung, H.J. , Park, J.Y. , Lee, J.B. , Yoon, Y. , 2013. Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renew. Energy 50, 522- 531.

[28]

Lee, Z.J. , Pan, J.S. , Hwang, B.J. , 2024. A sustainable development for building energy consumption based on improved rafflesia optimization algorithm with feature selection and ensemble deep learning. Sustainability 16 (15), 6306.

[29]

Li, T. , Fong, S. , Li, X. , Lu, Z. , Gandomi, A.H. , 2020. Swarm decision table and ensemble search methods in fog computing environment: case of day-ahead prediction of building energy demands using IoT sensors. IEEE Internet Things J. 7 (3), 1762- 1773.

[30]

Liu, M. , Que, Y. , Yang, N. , Yan, C. , Liu, Q. , 2024. Research on multi-objective optimization design of university student center in China based on low energy consumption and thermal comfort. Energies 17 (9), 2082.

[31]

Ma, L. , Shao, N. , Zhang, J. , Zhao, T. , 2015. The influence of doors and windows on the indoor temperature in rural house. Procedia Eng. 121, 621- 627.

[32]

Markarian, E. , Qiblawi, S. , Krishnan, S. , Divakaran, A. , Rethnam, O.R. , Thomas, A.V. , Azar, E. , 2024. Informing building retrofits at low computational costs: a multi-objective optimisation using machine learning surrogates of building performance simulation models. Journal of Building Performance Simulation 1-17.

[33]

Mishra, A.K. , Ramgopal, M. , 2013. Field studies on human thermal comfort: an overview. Build. Environ. 64, 94- 106.

[34]

Moosavi, V. , 2022. Urban morphology meets deep learning: exploring urban forms in one million cities, towns, and villages across the planet. Machine Learning and the City: Applications in Architecture and Urban Design, pp. 379-392.

[35]

Mostafavi, F. , Tahsildoost, M. , Zomorodian, Z.S. , Shahrestani, S.S. , 2024. An interactive assessment framework for residential space layouts using pix2pix predictive model at the early-stage building design. Smart and Sustainable Built Environment 13 (4), 809- 827.

[36]

Murakami, S. , Zeng, J. , Hayashi, T. , 1999. CFD analysis of wind environment around a human body. J. Wind Eng. Ind. Aerod. 83, 393- 408.

[37]

National Bureau of Statistics of China , 2020. China Statistical Yearbook. China Statistics Press, Beijing, China.

[38]

Nie, J. , Pang, Y. , Wang, C. , Zhang, H. , Yin, K. , 2021. Theoretical study on the relationship of building thermal insulation with indoor thermal comfort based on APMV index and energy consumption of rural residential buildings. Appl. Sci. 11 (18), 8565.

[39]

Pan, Y. , Qian, J. , Hu, Y. , 2020. A preliminary study on the formation of the general layouts on the northern neighborhood community based on GauGAN diversity output generator. Proceedings of the 2020 DigitalFUTURES: the 2nd International Conference on Computational Design and Robotic Fabrication(CDRF 2020), pp. 179-188.

[40]

Pantavou, K. , Lykoudis, S. , Nikolopoulou, M. , Tsiros, I.X. , 2018. Thermal sensation and climate: a comparison of UTCI and PET thresholds in different climates. Int. J. Biometeorol. 62 (9), 1695- 1708.

[41]

Perera, A.T.D. , Nik, V.M. , Chen, D. , Scartezzini, J.L. , Hong, T. , 2020. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 5 (2), 150- 159.

[42]

Recio Molina, J. , Lefebvre, G. , Gómez, M.M. , 2022. Study of the thermal comfort and the energy required to achieve it for housing modules in the environment of a high Andean rural area in Peru. Energy Build. 281, 112757.

[43]

Sakiyama, N.R.M. , Carlo, J.C. , Mazzaferro, L. , Garrecht, H. , 2021. Building optimization through a parametric design platform: using sensitivity analysis to improve a radial-based algorithm performance. Sustainability 13 (10), 5739.

[44]

Shao, N. , Zhang, J. , Ma, L. , 2017. Analysis on indoor thermal environment and optimization on design parameters of rural residence. J. Build. Eng. 12, 229- 238.

[45]

Shi, L. , Liu, Y. , Si, P. , Wang, D. , Pu, Z. , et al., 2024. Multimode solar photovoltaic energy utilization system for Plateau buildings in rural areas. Energy Convers. Manag. 311, 118534.

[46]

Showkatbakhsh, M. , Chronis, A. , Dillenburger, B. , 2019. Wallacei: an evolutionary multi-objective optimization engine for Grasshopper 3D. In: Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture, pp. 668-677.

[47]

Stavrakakis, G.M. , Zervas, P.L. , Sarimveis, H. , Markatos, N.C. , 2010. Development of a computational tool to quantify architecturaldesign effects on thermal comfort in naturally ventilated rural houses. Build. Environ. 45 (1), 65- 80.

[48]

Su, C. , Madani, H. , Palm, B. , 2018. Heating solutions for residential buildings in China: current status and future outlook. Energy Convers. Manag. 177, 493- 510.

[49]

Su, Y. , Li, Z. , Wang, C. , Meng, Q. , Gong, A. , Wu, Z. , Zhao, Q. , 2024. Summer outdoor thermal comfort assessment in city squaresda case study of cold dry winter, hot summer climate zone. Sustain. Cities Soc. 101, 105062.

[50]

Tahmasebi, F. , Mahdavi, A. , 2016. An inquiry into the reliability of window operation models in building performance simulation. Build. Environ. 105, 343- 357.

[51]

Teshnehdel, S. , Mirnezami, S. , Saber, A. , Pourzangbar, A. , Olabi, A.G. , 2020. Data-driven and numerical approaches to predict thermal comfort in traditional courtyards. Sustain. Energy Technol. Assessments 37, 100569.

[52]

Vellei, M. , Herrera, M. , Fosas, D. , Natarajan, S. , 2017. The influence of relative humidity on adaptive thermal comfort. Build. Environ. 124, 171- 185.

[53]

Wang, W. , Liu, K. , Zhang, M. , Shen, Y. , Jing, R. , Xu, X. , 2021. From simulation to data-driven approach: a framework of integrating urban morphology to low-energy urban design. Renew. Energy 179, 2016- 2035.

[54]

Wang, Z. , Rangaiah, G.P. , 2017. Application and analysis of methods for selecting an optimal solution from the Paretooptimal front obtained by multiobjective optimization. Ind. Eng. Chem. Res. 56 (2), 560- 574.

[55]

Weng, W. , Chen, C.L. , Wu, S. , Li, Y. , Wen, J. , 2019. An efficient stacking model of multi-label classification based on Pareto optimum. IEEE Access 7, 127427- 127437.

[56]

Wu, C. , Pan, H. , Luo, Z. , Liu, C. , Huang, H. , 2024. Multi-objective optimization of residential building energy consumption, daylighting, and thermal comfort based on BO-XGBoost-NSGA-II. Build. Environ. 254, 111386.

[57]

Wu, X. , Ma, T. , Zhang, J. , Shi, B. , 2023. The role of construction industry and construction policy on sustainable rural development in China. Environ. Sci. Pollut. Control Ser. 30 (3), 7942- 7955.

[58]

Xiong, Y. , Zhang, J. , Yan, Y. , Sun, S. , Xu, X. , Higueras, E. , 2022. Effect of the spatial form of Jiangnan traditional villages on microclimate and human comfort. Sustain. Cities Soc. 87, 104136.

[59]

Yang, S. , Yu, J. , Gao, Z. , Zhao, A. , 2023. Energy-saving optimization of air-conditioning water system based on data-driven and improved parallel artificial immune system algorithm. Energy Convers. Manag. 283, 116902.

[60]

Yi, T. , Wang, H. , Liu, C. , Li, X. , Wu, J. , 2022. Thermal comfort differences between urban villages and formal settlements in Chinese developing cities: a case study in Shenzhen. Sci. Total Environ. 853, 158283.

[61]

You, Y. , Yu, F. , Mao, N. , 2024. Fast prediction and optimization of building wind environment using CFD and deep learning method. Appl. Sci. 14 (10), 4087.

[62]

Yuan, J. , Meng, Q. , Zhang, L. , 2017. Thermal comfort of rural residenceinXiamen region in summer. HuazhongArchit. 35 (9), 55- 58.

[63]

Zhang, J. , Lu, J. , Deng, W. , Beccarelli, P. , Lun, I.Y.F. , 2023. Thermal comfort investigation of rural houses in China: a review. Build. Environ. 235, 110208.

[64]

Zhang, L. , Guo, S. , Wu, Z. , Alsaedi, A. , Hayat, T. , 2018. SWOT analysis for the promotion of energy efficiency in rural buildings: a case study of China. Energies 11 (4), 851.

[65]

Zhang, L. , Zhang, L. , Wang, Y. , 2016. Shape optimization of freeform buildings based on solar radiation gain and space efficiency using a multi-objective genetic algorithm in the severe cold zones of China. Sol. Energy 132, 38- 50.

[66]

Zhang, Y. Zhang, L. , 2024. A building energy consumption prediction model based on data mining and cluster analysis. In: Intelligent Computing Technology and Automation. IOS Press, pp. 487-496.

[67]

Zhu, L. , Liao, H. , Hou, B. , Cheng, L. , Li, H. , 2020. The status of household heating in northern China: a field survey in towns and villages. Environ. Sci. Pollut. Res. 27, 16145- 16158.

[68]

Zhai, X. , He, Z. , Wang, R. , Lu, S. , Zhang, L. , 2024. Multi-objective optimization of building envelope of rural housing in the severely cold region of China based on energy consumption, thermal comfort and cost-effectiveness. Indoor Built Environ. , 1420326.

RIGHTS & PERMISSIONS

The Author(s). Publishing services by Elsevier B.V. on behalf of Higher Education Press and KeAi.

AI Summary AI Mindmap
PDF (8337KB)

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/