Multi-objective optimization of EMS facilities using multi-source data: A case study in Dangtu, China

Jinze Li , Xiao Wang , Qiyan Zhang , Peng Tang

Front. Archit. Res. ›› 2025, Vol. 14 ›› Issue (4) : 1090 -1107.

PDF (3942KB)
Front. Archit. Res. ›› 2025, Vol. 14 ›› Issue (4) : 1090 -1107. DOI: 10.1016/j.foar.2024.10.011
RESEARCH ARTICLE

Multi-objective optimization of EMS facilities using multi-source data: A case study in Dangtu, China

Author information +
History +
PDF (3942KB)

Abstract

In recent decades, rapid urbanization has introduced significant challenges to urban planning, exacerbated by ongoing urban expansion and population growth. Among these challenges is the critical need to enhance public safety and the living environment, driven by principles of human-centered design and sustainable urban development. To address this, this paper introduces a novel multi-objective optimization framework for Emergency Medical Services (EMS) facility layout, integrating multi-source data to support urban planning and manage public safety risks effectively. This framework uses corroborative multi-source data to analyze current EMS facilities and suggests improvements through preservation, expansion, and new facility introduction, carefully considering construction costs, resident usage efficiency, and access equity. A multi-objective evolutionary algorithm calculates Pareto optimal solutions for site selection, allowing for a balanced consideration of conflicting EMS siting objectives. Further solution set clustering enables decision-makers to quickly identify and refine strategies aligned with their preferences. We demonstrate the applicability of our framework through a quantitative and qualitative case study in Dangtu, China. The results reveal that our approach not only aids urban planners in making informed decisions that improve EMS facility accessibility but also ensures equitable use and enhances public safety in alignment with sustainable urban development goals.

Keywords

Location selection / Emergency Medical Services (EMS) facility / Multi-objective optimization / Multi-source data

Cite this article

Download citation ▾
Jinze Li, Xiao Wang, Qiyan Zhang, Peng Tang. Multi-objective optimization of EMS facilities using multi-source data: A case study in Dangtu, China. Front. Archit. Res., 2025, 14(4): 1090-1107 DOI:10.1016/j.foar.2024.10.011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acuna, J.A. , Zayas-Castro, J.L. , Charkhgard, H. , 2020. Ambulance allocation optimization model for the overcrowding problem in US emergency departments: a case study in Florida. Soc. Econ. Plann. Sci. 71, 100747.

[2]

Alp, O. , Erkut, E. , Drezner, Z. , 2003. An efficient genetic algorithm for the p-median problem. Ann. Oper. Res. 122, 21- 42.

[3]

AutoNavi Traffic Big-data Team , 2017. 2017 Traffic analysis reports for major cities in China.

[4]

Chen, Y. , Lai, Z. , 2022. A multi-objective optimization approach for emergency medical service facilities location-allocation in rural areas. Risk Manag. Healthc. Pol. 15, 473- 490.

[5]

Chen, A.Y. , Yu, T.Y. , 2016. Network based temporary facility location for the Emergency Medical Services considering the disaster induced demand and the transportation infrastructure in disaster response. Transp. Res. Part B Methodol. 91, 408- 423.

[6]

Chen, Y. , Lai, Z. , Wang, Z. , Yang, D. , Wu, L. , 2021. Optimizing locations of waste transfer stations in rural areas. PLoS One 16(5), e0250962.

[7]

Church, R. , Velle, C.R. , 1974. The maximal covering location problem. Pap. Reg. Sci. 32 (1), 101- 118.

[8]

Cooper, L. , 1964. Heuristic methods for location-allocation problems. SIAM Rev. 6 (1), 37- 53.

[9]

Deb, K. , 2011. Multi-objective optimisation using evolutionary algorithms: an introduction. In: Multi-objective Evolutionary Optimisation for Product Design and Manufacturing. Springer, London, pp. 3-34 (London).

[10]

Deb, K. , Pratap, A. , Agarwal, S. , Meyarivan, T.A.M.T. , 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6 (2), 182- 197.

[11]

Delgado-Enales, I. , Del Ser, J. , Molina, P. , 2023. A framework to improve urban accessibility and environmental conditions in age-friendly cities using graph modeling and multi-objective optimization. Comput. Environ. Urban Syst. 102, 101966.

[12]

Deng, Y. , Zhang, Y. , Pan, J. , 2021. Optimization for locating emergency medical service facilities: a case study for health planning from China. Risk Manag. Healthc. Pol. 1791-1802.

[13]

Filippi, C. , Guastaroba, G. , Speranza, M.G. , 2021. On single-source capacitated facility location with cost and fairness objectives. Eur. J. Oper. Res. 289 (3), 959- 974.

[14]

Foster, A. , Dunham, I.M. , 2015. Volunteered geographic information, urban forests, & environmental justice. Comput. Environ. Urban Syst. 53, 65- 75.

[15]

Gall, M. , 2004. Where to go? Strategic modelling of access to emergency shelters in Mozambique. Disasters 28 (1), 82- 97.

[16]

Gao, P. , Wang, H. , Cushman, S.A. , Cheng, C. , Song, C. , Ye, S. , 2021. Sustainable land-use optimization using NSGA-II: theoretical and experimental comparisons of improved algorithms. Landsc. Ecol. 36, 1877- 1892.

[17]

Garfinkel, R.S. , Neebe, A.W. , Rao, M.R. , 1977. The m-center problem: minimax facility location. Manag. Sci. 23 (10), 1133- 1142.

[18]

Goldberg, D.E. , 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc.

[19]

Goldberg, D.E. , Holland, J.H. , 1988. Genetic algorithms and machine learning. Mach. Learn. 3, 95- 99.

[20]

Grekousis, G. , Liu, Y. , 2019. Where will the next emergency event occur? Predicting ambulance demand in emergency medical services using artificial intelligence. Comput. Environ. Urban Syst. 76, 110- 122.

[21]

Gu, W. , Wang, X. , McGregor, S.E. , 2010. Optimization of preventive health care facility locations. Int. J. Health Geogr. 9, 1- 16.

[22]

Hodgart, R.L. , 1978. Optimizing access to public services: a review of problems, models and methods of locating central facilities. Prog. Hum. Geogr. 2 (1), 17- 48.

[23]

Järvinen, P. , Rajala, J. , Sinervo, H. , 1972. Technical note-a branch-and-bound algorithm for seeking the P-median. Oper. Res. 20 (1), 173- 178.

[24]

Jia, H. , Ordóñez, F. , Dessouky, M. , 2007. A modeling framework for facility location of medical services for large-scale emergencies. IIE Trans. 39 (1), 41- 55.

[25]

Kandt, J. , Batty, M. , 2021. Smart cities, big data and urban policy: towards urban analytics for the long run. Cities 109, 102992.

[26]

Lai, C.M. , Chiu, C.C. , Liu, W.C. , Yeh, W.C. , 2019. A novel nondominated sorting simplified swarm optimization for multistage capacitated facility location problems with multiple quantitative and qualitative objectives. Appl. Soft Comput. 84, 105684.

[27]

Landa-Torres, I. , Manjarres, D. , Salcedo-Sanz, S. , Del Ser, J. , GilLopez, S. , 2013. A multi-objective grouping harmony search algorithm for the optimal distribution of 24-hour medical emergency units. Expert Syst. Appl. 40 (6), 2343- 2349.

[28]

Laporte, G. , Nickel, S. , Saldanha-da-Gama, F. , 2019. Introduction to Location Science. Springer International Publishing, pp. 1-21.

[29]

Leitch, S. , Wei, Z. , 2024. Improving spatial access to healthcare facilities: an integrated approach with spatial analysis and optimization modeling. Ann. Oper. Res. 1- 18.

[30]

Li, M. , Wang, F. , Kwan, M.P. , Chen, J. , Wang, J. , 2022. Equalizing the spatial accessibility of emergency medical services in Shanghai: A trade-off perspective. Comput. Environ. Urban Syst. 92, 101745.

[31]

Liu, S. , Salari, N. , 2024. Fairness in accessibility of public service facilities. Oper. Res. Lett. 107141.

[32]

Liu, M. , Yang, D. , Hao, F. , 2017. Optimization for the locations of ambulances under two-stage life rescue in the emergency medical service: a case study in Shanghai, China. Math. Probl Eng. 2017, 1830480.

[33]

Mladenović N. , Labbé M. , Hansen, P. , 2003. Solving the p-center problem with tabu search and variable neighborhood search. Networks: Int. J. 42 (1), 48- 64.

[34]

Mühlenbein, H. , Schlierkamp-Voosen, D. , 1993. Predictive models for the breeder genetic algorithm I. Continuous parameter optimization. Evol. Comput. 1 (1), 25- 49.

[35]

Murawski, L. , Church, R.L. , 2009. Improving accessibility to rural health services: the maximal covering network improvement problem. Soc. Econ. Plann. Sci. 43 (2), 102- 110.

[36]

Nannar, S. , Sindhuchao, S. , Chaiyaphan, C. , Ransikarbum, K. , 2024. Optimization of the sustainable food supply chain with integrative data envelopment analysis approach. Int. J. Manag. Sci. Eng. Manag. 1- 16.

[37]

National Bureau of Statistics of China , 2023. China Statistical Yearbook 2023. China Statistics Press, Beijing.

[38]

Ngui, A.N. , Apparicio, P. , 2011. Optimizing the two-step floating catchment area method for measuring spatial accessibility to medical clinics in Montreal. BMC Health Serv. Res. 11, 1- 12.

[39]

Pell, J.P. , Sirel, J.M. , Marsden, A.K. , Ford, I. , Cobbe, S.M. , 2001. Effect of reducing ambulance response times on deaths from out of hospital cardiac arrest: cohort study. BMJ 322 (7299), 1385- 1388.

[40]

Pereira, R.H. , 2019. Future accessibility impacts of transport policy scenarios: Equity and sensitivity to travel time thresholds for Bus Rapid Transit expansion in Rio de Janeiro. J. Transport Geogr. 74, 321- 332.

[41]

Ransikarbum, K. , Mason, S.J. , 2022. A bi-objective optimisation of post-disaster relief distribution and short-term network restoration using hybrid NSGA-II algorithm. Int. J. Prod. Res. 60 (19), 5769- 5793.

[42]

Ransikarbum, K. , Pitakaso, R. , 2024. Multi-objective optimization design of sustainable biofuel network with integrated fuzzy analytic hierarchy process. Expert Syst. Appl. 240, 122586.

[43]

Rawls, C.G. , Turnquist, M.A. , 2012. Pre-positioning and dynamic delivery planning for short-term response following a natural disaster. Soc. Econ. Plann. Sci. 46 (1), 46- 54.

[44]

Rhoads, D. , Solé-Ribalta, A. , Borge-Holthoefer, J. , 2023. The inclusive 15-minute city: walkability analysis with sidewalk networks. Comput. Environ. Urban Syst. 100, 101936.

[45]

Rizeei, H.M. , Pradhan, B. , Saharkhiz, M.A. , 2019. Allocation of emergency response centres in response to pluvial floodingprone demand points using integrated multiple layer perceptron and maximum coverage location problem models. Int. J. Disaster Risk Reduc. 38, 101205.

[46]

Song, M. , Chen, D. , 2018a. An improved knowledge-informed NSGAII for multi-objective land allocation (MOLA). Geo-Spatial Inf. Sci. 21 (4), 273- 287.

[47]

Song, M. , Chen, D. , 2018b. A comparison of three heuristic optimization algorithms for solving the multi-objective land allocation (MOLA) problem. Spatial Sci. 24 (1), 19- 31.

[48]

Sun, H. , Wang, Y. , Xue, Y. , 2021a. A bi-objective robust optimization model for disaster response planning under uncertainties. Comput. Ind. Eng. 155, 107213.

[49]

Sun, H. , Wang, Y. , Zhang, J. , Cao, W. , 2021b. A robust optimization model for location-transportation problem of disaster casualties with triage and uncertainty. Expert Syst. Appl. 175, 114867.

[50]

Teitz, M.B. , Bart, P. , 1968. Heuristic methods for estimating the generalized vertex median of a weighted graph. Oper. Res. 16 (5), 955- 961.

[51]

Toregas, C. , ReVelle, C. , 1972. Optimal location under time or distance constraints. Regional Science Association 28 (1), 131- 143.

[52]

Toregas, C. , Swain, R. , ReVelle, C. , Bergman, L. , 1971. The location of emergency service facilities. Oper. Res. 19 (6), 1363- 1373.

[53]

Vargas-Santiago, M. , Monroy, R. , Zhang, C. , Ramirez-Marquez, J.E. , León-Velasco, D.A. , 2021. The adaptable Pareto set problem for facility location: a video game approach. Expert Syst. Appl. 186, 115682.

[54]

Xiang, Y. , Cao, W. , Zheng, H. , Su, Y. , 2022. Optimization research on the site selection of fire safety for mega projects sites based on multi-objective particle swarm. Evolutionary Intelligence 15, 2455- 2471.

[55]

Xu, J. , Murray, A.T. , Church, R.L. , Wei, R. , 2023. Service allocation equity in location coverage analytics. Eur. J. Oper. Res. 305 (1), 21- 37.

[56]

Yang, Y. , Yin, J. , Ye, M. , She, D. , Yu, J. , 2020a. Multi-coverage optimal location model for emergency medical service (EMS)

[57]

facilities under various disaster scenarios: a case study of urban fluvial floods in the Minhang district of Shanghai, China. Nat. Hazards Earth Syst. Sci. 20 (1), 181- 195.

[58]

Yang, M.D. , Chen, Y.P. , Wang, C.T. , Deng, M.J. , Lin, Y.H. , Chen, H.W. , 2020b. A stochastic multi-objective optimization decision model for energy facility allocation: a case of liquefied petroleum gas station. Clean Technol. Environ. Policy 22, 389- 398.

[59]

Yang, Y. , Xie, B. , Lyu, J. , Liang, X. , Ding, D. , Zhong, Y. , et al., 2024. Optimizing urban functional land towards "dual carbon" target: a coupling structural and spatial scales approach. Cities 148, 104860.

[60]

Yi, Z. , Chen, B. , Liu, X.C. , Wei, R. , Chen, J. , Chen, Z. , 2023. An agent-based modeling approach for public charging demand estimation and charging station location optimization at urban scale. Comput. Environ. Urban Syst. 101, 101949.

[61]

Zhang, W. , Cao, K. , Liu, S. , Huang, B. , 2016. A multi-objective optimization approach for health-care facility locationallocation problems in highly developed cities such as Hong Kong. Comput. Environ. Urban Syst. 59, 220- 230.

RIGHTS & PERMISSIONS

The Author(s). Publishing services by Elsevier B.V. on behalf of Higher Education Press and KeAi.

AI Summary AI Mindmap
PDF (3942KB)

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/