Impact of solar reflectivity and infrared emissivity on the thermal performance of metal and concrete roofs in cloudy warm-humid climate
Jefferson Torres-Quezada, Antonio Isalgué, Helena Coch
Impact of solar reflectivity and infrared emissivity on the thermal performance of metal and concrete roofs in cloudy warm-humid climate
Regions near latitude 0° are characterized by warm-humid climate and also by high cloudiness. In these regions, metal roofs has been the most widely used typology. However, in the last decades, the use of heavy concrete roofs has increased significantly. Given its material characteristics, this roof typology offers a higher thermal resistance and thermal mass than a metal roof. Most strategies focus on the use of these characteristics, as well as the use of high reflectivity and emissivity. However, the impact of cloudiness on the effectiveness of these strategies has been little addressed. This research focuses on the impact of reflectivity and emissivity change on the thermal performance of these two roofs in a cloudy warm-humid climate. To achieve this objective, simulations validated with measurements were used. The results show that the efficiency of reflectivity and emissivity is lower in this region compared to other regions. The impact of these properties is further reduced with increasing thermal mass or decreasing thermal transmittance, so the effectiveness of reflectivity and emissivity is minimal on the concrete roof. Finally, this study supports that a metal roof with a reflectivity and emissivity above 0.70 can offer lower daily average temperatures than a concrete roof.
Concrete roof / Metal roof / Radiative properties / Simulations / Measurements
[1] |
Allen, L.K.K. Elias, S. Lim, C.H., 2008. Thermal Performance Evaluation of roofing systems and materials in Malaysian residential development. In: Proceedings of SENVAR, ISESEE, Humanity and Technology, pp. 387-395.
|
[2] |
Al-Obaidi, K.M., Ismail, M., Abdul Rahman, A.M., 2014. Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: a literature review. Frontiers of Architectural Research 3, 283- 297.
|
[3] |
Arumugam, R.S., Garg, V., Ram, V.V., Bhatia, A., 2015. Optimizing roof insulation for roofs with high albedo coating and radiant barriers in India. J. Build. Eng. 2, 52- 58.
|
[4] |
ASHRAE, 2013. ASHRAE Handbook. Fundamentals (Inch-Pound Edition). American Society of Heating, Refrigerating and AirConditioning Engineers handbook, Fundamentals.
|
[5] |
ASTM, 1999. Designation: E1933-99a Standard Test Methods for Measuring and Compensating for Emissivity Using Infrared Imaging Radiometers.
|
[6] |
ASTM A792/A792M-10, 2015. Standard Specification for Steel Sheet, 55 % Aluminum-Zinc Alloy-Coated by the Hot-Dip Process. ASTM International. www.astm.org, West Conshohocken, PA.
|
[7] |
Baneshi, M. Gonome, H. Maruyama, S., 2016. Cool black roof impacts into the cooling and heating load demand of a residential building in various climates. Sol. Energy Mater. Sol. Cell. 152, 21-33.
CrossRef
Google scholar
|
[8] |
Beckers, B., Masset, L., 2003. HeliodonTM_2.6-1 Software.
|
[9] |
Bergman, T. Lavine, A. Incropera, F. Dewitt, D., 2011. Fundamentals of Heat and Mass Transfer. John Wiley & sons, Danvers.
|
[10] |
Biwole, P.H., Woloszyn, M., Pompeo, C., 2008. Heat transfers in a double-skin roof ventilated by natural convection in summer time. Energy Build. 40, 1487- 1497.
|
[11] |
Boulifa, M., Adane, A., Rezagui, A., Ameur, E.Z., 2015. Estimate of the global solar radiation by cloudy sky using HRV images. Energy Proc. 74, 1079- 1089.
|
[12] |
Chou, H.M., Chen, C.R., Nguyen, V.L., 2013. A new design of metalsheet cool roof using PCM. Energy Build. 57, 42- 50.
|
[13] |
Department of Energy, U., 2022. EnergyPlusTM Version 22.1.0 Documentation Engineering Reference.
|
[14] |
DesignBuilder, 2016. DesignBuilder Software Ltd - Home.
|
[15] |
Diulio, M.P., Netto, G.R., Berardi, R., Czajkowski, J.D., 2016. Impact of the envelope on residential heating energy demand in the Metropolitan Region of La Plata, based on the energy retrofit of a house. Ambiente Construido 16.
|
[16] |
DOE, 2017. EnergyPlus Licensing | EnergyPlus.
|
[17] |
ENERGYPLUS, 2015. EnergyPlus TM Documentation Auxiliary EnergyPlus Programs Extra Programs for EnergyPlus.
|
[18] |
Fantucci, S., Serra, V., 2019. Investigating the performance of reflective insulation and low emissivity paints for the energy retrofit of roof attics. Energy Build. 182, 300- 310.
|
[19] |
García, I., de Blas, M., Hernández, B., Sáenz, C., Torres, J.L., 2021. Diffuse irradiance on tilted planes in urban environments: evaluation of models modified with sky and circumsolar view factors. Renew. Energy 180, 1194- 1209.
|
[20] |
Geetha, N., Velraj, R., 2012. Passive cooling methods for energy efficient buildings with and without thermal energy storage-A review. Energy Education Science and Technology Part A: Energy Science and Research 29, 913- 946.
|
[21] |
Hernández-Pérez, I., Xamán, J., Macías-Melo, E.V., Aguilar-Castro, K.M., Zavala-Guillén, I., Hernández-López, I., Simá, E., 2018. Experimental thermal evaluation of building roofs with conventional and reflective coatings. Energy Build. 158, 569- 579.
|
[22] |
INEC, 2019. Encuesta de Edificaciones (Permisos de construcción 2018).
|
[23] |
INEC, 2011. X Censo Nacional de Población y VI Vivienda de 2011.
|
[24] |
INEC, 2010. Censo De Población Y Vivienda 2010.
|
[25] |
INEC, 1990. Censo de Población y Vivienda 1990.
|
[26] |
INEN InstitutoEcuatorianodeNormalización,, 2008. NTE_INEN 2221: paneles de Acero. Requisitos. INEN, Quito, Ecuador, pp. 1-14.
|
[27] |
Instituto_Nacional_Seguridad_e_Higiene_en_el_Trabajo, 1994. NTP 345: El control de la ventilación mediante gases trazadores (Madrid-España).
|
[28] |
Jim, C.Y., 2015. Diurnal and partitioned heat-flux patterns of coupled green-building roof systems. Renew. Energy 81, 262- 274.
|
[29] |
Jusuf, S.K., Wong, N.H., Hagen, E., Anggoro, R., Hong, Y., 2007. The influence of land use on the urban heat island in Singapore. Habitat Int. 31, 232- 242.
|
[30] |
Kolokotroni, M., Shittu, E., Santos, T., Ramowski, L., Mollard, A., Rowe, K., Wilson, E., Filho, J.P., de B., Novieto D., 2018. Cool roofs: high tech low cost solution for energy efficiency and thermal comfort in low rise low income houses in high solar radiation countries. Energy Build. 176, 58- 70.
|
[31] |
Lauber, W., Cheret, Peter, Ferstl, Klaus, Ribbeck, Eckhart, 2005. Tropical Architecture : Sustainable and Humane Building in Africa, Latin America, and South-East Asia. Prestel, New York.
|
[32] |
Levinson, R., Akbari, H., Berdahl, P., 2010. Measuring solar reflectance-Part II: review of practical methods. Sol. Energy 84, 1745- 1759.
|
[33] |
López-Besora, J., Isalgué, A., Coch, H., Crespo, I., Alonso, C., 2014. Yellow is green: an opportunity for energy savings through colour in architectural spaces. Energy Build. 78, 105- 112.
|
[34] |
Luiz, E.W., Martins, F.R., Costa, R.S., Pereira, E.B., 2018. Comparison of methodologies for cloud cover estimation in Brazil - a case study. Energy for Sustainable Development 43, 15- 22.
|
[35] |
Meddage, D.P.P. Chadee, A. Jayasinghe, M.T.R. Rathnayake, U., 2022. Exploring the applicability of expanded polystyrene (EPS) based concrete panels as roof slab insulation in the tropics. Case Stud. Constr. Mater. 17, e01361.
|
[36] |
Mohd Ashhar M.Z., Haw, L.C., 2022. Recent research and development on the use of reflective technology in buildings - a review. J. Build. Eng. 45, 103552
|
[37] |
ONE, OficinaNacionaldeEstadística, 2010. IX Censo Nacional de Población y Vivienda 2010.
|
[38] |
Pelaz, B. Blanco, J.M. Cuadrado, J. Egiluz, Z. Buruaga, A., 2017. Analysis of the influence of wood cladding on the thermal behavior of building façades; characterization through simulation by using different tools and comparative testing validation. Energy Build. 141, 349-360.
CrossRef
Google scholar
|
[39] |
Pisello, A.L., 2017. State of the art on the development of cool coatings for buildings and cities. Sol. Energy 144, 660- 680.
|
[40] |
Qin, Y., Zhang, M., Hiller, J.E., 2017. Theoretical and experimental studies on the daily accumulative heat gain from cool roofs. Energy 129, 138- 147.
|
[41] |
Qiu, T., Wang, G., Xu, Q., Ni, G., 2018. Study on the thermal performance and design method of solar reflective-thermal insulation hybrid system for wall and roof in Shanghai. Sol. Energy 171, 851- 862.
|
[42] |
Santana, B.O., Torres-Quezada, J., Coch, H., Isalgue, A., 2022. Monitoring and calculation study in mediterranean residential spaces: thermal performance comparison for the winter season. Buildings 12.
|
[43] |
Seem, J.E., 1987. Modeling of Heat Transfer in Buildings (Ph.D Thesis). University of Wisconsin, Madison.
|
[44] |
Shittu, E., Stojceska, V., Gratton, P., Kolokotroni, M., 2020. Environmental impact of cool roof paint: case-study of house retrofit in two hot islands. Energy Build. 217, 110007
|
[45] |
Synnefa, a., Santamouris, M., Livada, I., 2006. A study of the thermal performance of reflective coatings for the urban environment. Sol. Energy 80, 968- 981.
|
[46] |
Tong, S., Li, H., Zingre, K.T., Wan, M.P., Chang, V.W.C., Wong, S.K., Toh, W.B.T., Lee, I.Y.L., 2014. Thermal performance of concrete-based roofs in tropical climate. Energy Build. 76, 392- 401.
|
[47] |
Torres-Quezada, J., Coch, H., Isalgué, A., 2021. Data set of climatic factors measured in a low latitude region with warm and humid climate: solar radiation, cloud cover and sky temperature. Data Brief 38, 107404
|
[48] |
Torres-Quezada, J., Coch, H., Isalgué, A., 2019. Assessment of the reflectivity and emissivity impact on light metal roofs thermal behaviour, in warm and humid climate. Energy Build. 188- 189, 200- 208.
|
[49] |
Torres-Quezada, J., Coch, H., Isalgué, A., 2017. The roof thermal behavior in a tropical-equatorial climate. 1st International Congress on Architecture Doctorates.
|
[50] |
Torres-Quezada, J., Coch, H., Isalgué, A., López, J., 2018. The roof impact on the heat balance of low height buildings at low latitudes. Smart and Healthy within the 2-degree Limit. PLEA.
|
[51] |
Torres-Quezada, J. Pages, A. Coch, H. Isalgué, A., 2016. Radiative Performance assessment of two roofs in Meditarranean and Equatorial climates. In: First International Conference on Urban Physics, pp. 337-348. Quito, Ecuador.
|
[52] |
United Nations, D. of E., 2018. World urbanization prospects. Demogr. Res.
|
[53] |
Vijaykumar, K.C.K., Srinivasan, P.S.S., Dhandapani, S., 2007. A performance of hollow clay tile (HCT) laid reinforced cement concrete (RCC) roof for tropical summer climates. Energy Build. 39, 886- 892.
|
[54] |
Vollmer, M. Möllmann, K.P., 2018. Infrared Thermal Imaging: Fundamentals, Reserach and Aplications, second. Wiley, Weinheim-Germany.
|
[55] |
Wacker, S., Gröbner, J., Zysset, C., Diener, L., Tzoumanikas, P., Kazantzidis, A., Vuilleumier, L., Stöckli, R., Nyeki, S., Kämpfer, N., 2015. Cloud observations in Switzerland using hemispherical sky cameras. J. Geophys. Res. 120, 695- 707.
|
[56] |
WeatherCompanyLLC, 2016. Estación Meteorológica Ieloroel2 (ElCambio).
|
[57] |
Wilson, A., Jetz, W., 2016. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions.
|
[58] |
Ziming, C., Fuqiang, W., Dayang, G., Huaxu, L., Yong, S., 2020. Low-cost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an “atmospheric window. ”. Sol. Energy Mater. Sol. Cell. 213, 110563
|
[59] |
Zingre, K., Kumar, K., Pun Wan, M., 2020. Analysing the effect of substrate properties on building envelope thermal performance in various climates. Energies 13 (19), 1- 8.
|
[60] |
Zingre, K.T., Wan, M.P., Tong, S., Li, H., Chang, V., Wong, S.K., Toh, W.B.T., Lee, I.Y.L., 2015a. Modeling of cool roof heat transfer in tropical climate. Renew. Energy 75, 210- 223.
|
[61] |
Zingre, K.T., Wan, M.P., Wong, S.K., Toh, W.B.T., Lee, I.Y.L., 2015b. Modelling of cool roof performance for double-skin roofs in tropical climate. Energy 82, 813- 826.
|
/
〈 | 〉 |