Higher-order stochastic partial differential equations with branching noises

Expand
  • 1.Department of Mathematics, Xidian University;School of Mathematical Sciences, Nankai University; 2.School of Mathematical Sciences, Nankai University; 3.Department of Mathematics, University of Florida

Published date: 05 Mar 2008

Abstract

In this paper, we propose a class of higher-order stochastic partial differential equations (SPDEs) with branching noises. The existence of weak (mild) solutions is established through weak convergence and tightness arguments.

Cite this article

BO Lijun, WANG Yongjin, YAN Liqing . Higher-order stochastic partial differential equations with branching noises[J]. Frontiers of Mathematics in China, 2008 , 3(1) : 15 -35 . DOI: 10.1007/s11464-008-0006-0

References

1. Beghin L Orsingher E Ragozina T Joint distributions of the maximum and the process forhigher-order diffusionsStoch Process Appl 2001 947193. doi:10.1016/S0304‐4149(00)00105‐8
2. Bo L Wang Y Stochastic Cahn-Hilliard partialdifferential equations with Lévy spacetime white noisesStoch Dyn 2006 6229244. doi:10.1142/S0219493706001736
3. Cardon-Weber C Cahn-Hilliardstochastic equation: existence of the solution and of its densityBernoulli 2001 7777816. doi:10.2307/3318542
4. Cardon-Weber C Millet A On strongly Petrovskiii's parabolicSPDEs in arbitrary dimension and application to the stochastic Cahn-HilliardequationJ Theor Probab 2004 17149. doi:10.1023/B:JOTP.0000020474.79479.fa
5. Da Prato G Debussche A Stochastic Cahn-Hilliard equationNonlinear Anal 1996 26241263. doi:10.1016/0362‐546X(94)00277‐O
6. Da Prato G Zabczyk J Ergodicity for Infinite DimensionalSystemsCambridgeCambridge Univ Press 1996
7. Dalang R Extendingmartingale measure stochastic integral with applications to spatiallyhomogeneous SPDEsElectron J Probab 1999 4129
8. Donati-Martin C Pardoux E White noise driven SPDEs withreflectionProbab Th Rel Fields 1993 95124. doi:10.1007/BF01197335
9. Ethier S Kurtz T Markov Processes, Characterizationand ConvergenceNew YorkWiley & Sons 1986
10. Gyöngy I Existenceand uniqueness results for semilinear stochastic partial differentialequationsStoch Process Appl 1998 73271299. doi:10.1016/S0304‐4149(97)00103‐8
11. Hochberg J Orsingher E The arc-sine law and its analogsfor processes governed by signed and complex measuresStoch Process Appl 1994 52273292. doi:10.1016/0304‐4149(94)90029‐9
12. Kolkovska E Onthe Burgers equation with a stochastic stepping stone noisy termJ Math Sci 2004 12126452652. doi:10.1023/B:JOTH.0000027030.09774.05
13. Konno N Shiga T Stochastic partial differentialequations for some measure-valued diffusionsProbab Th Rel Fields 1988 79201225. doi:10.1007/BF00320919
14. Lachal A Distributionsof sojourn time, maximum and minimum for pseudo-processes governedby higher-order heat-type equationsElectronJ Probab 2003 8153
15. Millet A Morien P On a nonlinear stochastic waveequation in the plane: existence and uniqueness of the solutionAnn Appl Probab 2001 11922951
16. Mueller C Long-timeexistence for signed solution of the heat equation with a noise termProbab Th Rel Fields 1998 1105168. doi:10.1007/s004400050144
17. Shiga T Twocontrasting properties of solutions for one-dimension stochastic partialdifferential equationsCan J Math 1994 46415437
18. Walsh J AnIntroduction to Stochastic Partial Differential EquationsBerlinSpringer-Verlag 1986
Outlines

/