Let H and T be subgroups of a finite group G. H is said to be permutable with T in G if HT = TH. In this paper, we use the concept of permutable subgroups to give two new criterions of supersolubility of the product G = AB of finite supersoluble groups A and B.
LIU Xi, LI Baojun, YI Xiaolan
. Some criteria for supersolubility in products
of finite groups[J]. Frontiers of Mathematics in China, 2008
, 3(1)
: 79
-86
.
DOI: 10.1007/s11464-008-0007-z
1. Alejandre M Ballester-Bolinches A Cossey J Permutable products of supersoluble groupsJ Algebra 2004 276453461. doi:10.1016/j.jalgebra.2003.01.002
2. Asaad M Shaalan A On the supersolvability offinite groupsArch Math 1989 53318326. doi:10.1007/BF01195210
3. Baer R Classesof finite groups and their propertiesIllinoisJ Math 1957 1115187
4. Ballester-Bolinches A Cossey J Pedraza-Aguilera M C On products of finite supersoluble groupsCom Algebra 2001 29(7)31453152. doi:10.1081/AGB‐100105013
5. Ballester-Bolinches A Perez-Ramos M D Pedraza-Aguilera M C Mutually permutable products of finitegroupsJ Algebra 1999 213369377. doi:10.1006/jabr.1998.7653
6. Cunihin S A Simplicitéde groupe fini et les ordres da ses classes d'élémentsconjuguésComptes Rendus Acad SciParis 1930 191397399
7. Friesen D Productsof normal supersoluble subgroupsProc AmerMath Soc 1971 304648. doi:10.2307/2038217
8. Guo W TheTheory of Classes of GroupsBeijing,New York, Dordrecht, Boston, LondonScience Press-Kluwer Academic Publishers 2000
9. Guo W Shum K P Skiba A Criterions of supersolubility for products of supersolublegroupsPubl Math Debrecen 2006 68(3–4)433449
10. Hauck P Martinez-Pastor A Perez-Ramos M D Fitting classes and products of totally permutable groupsJ Algebra 2002 252114126. doi:10.1016/S0021‐8693(02)00012‐1
11. Huppert B EndlicheGruppen IBerlin, Heidelberg, New YorkSpringer-Verlag 1967
12. Liu X Shi L Yang N Permutable products of finite supersoluble groupsJ Xuzhou Normal University 2008 26(1)(in press)
13. Weinstein M BetweenNilpotent and SolvablePassaicPolygonal Publishing House 1982