Bernstein type result for constant mean curvature hypersurface

Expand
  • School of Mathematical Sciences, Fudan University;

Published date: 05 Sep 2008

Abstract

We prove a Bernstein type theorem for constant mean curvature hypersurfaces in Rn+1 under certain growth conditions for n ≤ 3. Our result extends the case when M is a minimal hypersurface in the same condition.

Cite this article

LIU Huaqiao, MENG Qingyu . Bernstein type result for constant mean curvature hypersurface[J]. Frontiers of Mathematics in China, 2008 , 3(3) : 345 -353 . DOI: 10.1007/s11464-008-0030-0

References

1. Almgren F J Jr . Some interior regularity theorems for minimal surfaces and an extensionof Bernstein's theorem. Ann of Math, 1966, 84: 277–292. doi:10.2307/1970520
2. Bombieri E, Degiorgi E, Giusti E . Minimal cones and the Bernstein problem. Invent Math, 1969, 7: 243–268. doi:10.1007/BF01404309
3. Caffarelli L, Nirenberg L, Spruck J . On a form of Bernstein's theorem. In: Analyse Math et Appl. Paris: Gauthier-Villars, 1988, 55–66
4. Chern S S . On the curvatures on a piece of hypersurface in Euclidean space. Abh Math Sem Hamburg, 1965, 29: 77–91
5. Ecker K, Huisken G . A Bernstein result for minimalgraphs of controlled growth. J Diff Geom, 1990, 31, 397–400
6. Giorgi De E . Unaestensione del teorema di Bernstein. AnnScuola Norm Sup Pisa, 1965, 19: 79–85
7. Hoffman D A, Osserman R, Schoen R . On the Gauss map of complete surfaces of constant meancurvature in R3 and R4. Comment Math Helvetici, 1982, 57: 519–531. doi:10.1007/BF02565874
8. Moser J . OnHarnack's theorem for elliptic differential equations. Comm Pure Appl Math, 1961, 14: 577–591. doi:10.1002/cpa.3160140329
9. Nitsche C C J . Lectures on Minimal Surfaces. Cambridge: Cambridge Univ Press, 1989
10. Simons J . Minimalvarieties in Riemannian manifolds. AnnMath, 1968, 88: 62–105. doi:10.2307/1970556
11. Smoczyk K, Wang G F, Xin Y L . Bernstein type theorems with flat normal bundle. Calc Var, 2006, 26(1): 57–67. doi:10.1007/s00526‐005‐0359‐0
12. Xin Y L . Minimal Submanifolds and Related Topics. Singapore: World Scientific Publ, 2003
13. Xin Y L . Bernstein type theorems without graphic condition. Asian J Math, 2005, (1): 31–44
Outlines

/