Bernstein type result for constant mean curvature hypersurface

Huaqiao Liu , Qingyu Meng

Front. Math. China ›› 2008, Vol. 3 ›› Issue (3) : 345 -353.

PDF (141KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (3) : 345 -353. DOI: 10.1007/s11464-008-0030-0
Article

Bernstein type result for constant mean curvature hypersurface

Author information +
History +
PDF (141KB)

Abstract

We prove a Bernstein type theorem for constant mean curvature hypersurfaces in ℝn+1 under certain growth conditions for n ⩽ 3. Our result extends the case when M is a minimal hypersurface in the same condition.

Keywords

Constant mean curvature hypersurface / gradient estimate

Cite this article

Download citation ▾
Huaqiao Liu, Qingyu Meng. Bernstein type result for constant mean curvature hypersurface. Front. Math. China, 2008, 3(3): 345-353 DOI:10.1007/s11464-008-0030-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Almgren F. J. Jr. Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem. Ann of Math, 1966, 84: 277-292.

[2]

Bombieri E., Degiorgi E., Giusti E. Minimal cones and the Bernstein problem. Invent Math, 1969, 7: 243-268.

[3]

Caffarelli L., Nirenberg L., Spruck J. On a form of Bernstein’s theorem. Analyse Math et Appl, 1988, Paris: Gauthier-Villars, 55-66.

[4]

Chern S. S. On the curvatures on a piece of hypersurface in Euclidean space. Abh Math Sem Hamburg, 1965, 29: 77-91.

[5]

Ecker K., Huisken G. A Bernstein result for minimal graphs of controlled growth. J Diff Geom, 1990, 31: 397-400.

[6]

De Giorgi E. Una estensione del teorema di Bernstein. Ann Scuola Norm Sup Pisa, 1965, 19: 79-85.

[7]

Hoffman D. A., Osserman R., Schoen R. On the Gauss map of complete surfaces of constant mean curvature in ℝ3 and ℝ4. Comment Math Helvetici, 1982, 57: 519-531.

[8]

Moser J. On Harnack’s theorem for elliptic differential equations. Comm Pure Appl Math, 1961, 14: 577-591.

[9]

Nitsche C. C. J. Lectures on Minimal Surfaces, 1989, Cambridge: Cambridge Univ Press.

[10]

Simons J. Minimal varieties in Riemannian manifolds. Ann Math, 1968, 88: 62-105.

[11]

Smoczyk K., Wang G. F., Xin Y. L. Bernstein type theorems with flat normal bundle. Calc Var, 2006, 26(1): 57-67.

[12]

Xin Y. L. Minimal Submanifolds and Related Topics, 2003, Singapore: World Scientific Publ.

[13]

Xin Y L. Bernstein type theorems without graphic condition. Asian J Math, 2005, (1): 31–44

AI Summary AI Mindmap
PDF (141KB)

922

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/