In this paper we construct an upwind finite volume element scheme based on the Crouzeix-Raviart nonconforming element for nonselfadjoint elliptic problems. These problems often appear in dealing with flow in porous media. We establish the optimal order H1-norm error estimate. We also give the uniform convergence under minimal elliptic regularity assumption.
RUI Hongxing, BI Chunjia
. Convergence analysis of an upwind finite volume
element method with Crouzeix-Raviart element for non-selfadjoint and
indefinite problems[J]. Frontiers of Mathematics in China, 2008
, 3(4)
: 563
-579
.
DOI: 10.1007/s11464-008-0034-9
1. Baba K, Tabata M . On a conservative upwindfinite element scheme for convective diffusion equations. RAIRO Numer Anal, 1981, 15(1): 3–25
2. Bank R E, Rose D J . Some error estimates forthe box method. SIAM J Numer Anal, 1987, 24(4): 777–787. doi:10.1137/0724050
3. Bi C J, Li L K . The mortar finite volumemethod with the Crouzeix-Raviart element for elliptic problems. Comp Meth Appl Mech Engrg, 2003, 192(1): 15–31. doi:10.1016/S0045-7825(02)00494-2
4. Cai Z . Onthe finite volume element method. NumerMath, 1991, 58(1): 713–735. doi:10.1007/BF01385651
5. Cai Z, Mandel J, McCormick S . The finite volume element method for diffusion equationson general triangulations. SIAM J NumerAnal, 1991, 28(2): 392–402. doi:10.1137/0728022
6. Chatzipantelidis P . Afinite volume method based on the Crouzeix-Raviart element for ellipticPDE's in two dimensions. Numer Math, 1999, 82(3): 409–432. doi:10.1007/s002110050425
7. Chatzipantelidis P . Finitevolume methods for elliptic PDE's: A new approach. Mathematical Modelling and Numerical Analysis, 2002, 36(2): 307–324. doi:10.1051/m2an:2002014
8. Chen J R, Li L K . Convergence and domain decompositionfor nonconforming and mixed element methods for non-selfadjoint andindefinite problems. Comp Meth Appl MechEngrg, 1999, 173(1): 1–20. doi:10.1016/S0045-7825(98)00251-5
9. Chen J R, Li L K . Uniform convergence and preconditioningmethods for projection nonconforming and mixed methods for non-selfadjointand indefinite problems. Comp Meth ApplMech Engrg, 2000, 185(1): 75–89. doi:10.1016/S0045-7825(99)00347-3
10. Ciarlet P . TheFinite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978
11. Crouzeix M, Raviart P A . Conforming and non-conformingfinite element methods for solving the stationary Stokes equations. RAIRO Anal Numer, 1973, 7(1): 33–76
12. Ewing R E, Lin T, Lin Y P . On the accuracy of the finite volume element method basedon piecewise linear polynomials. SIAM JNumer Anal, 2002, 39(6): 1865–1888. doi:10.1137/S0036142900368873
13. Huang J G, Xi S T . On the finite volume elementmethod for general self-adjoint elliptic problems. SIAM J Numer Anal, 1998, 35(5): 1762–1774. doi:10.1137/S0036142994264699
14. Li L K, Chen J R . Uniform convergence and preconditioningmethod for mortar mixed element method for nonselfadjoint and indefiniteproblems. Comp Meth Appl Mech Engrg, 2000, 189(3): 943–960. doi:10.1016/S0045-7825(99)00327-8
15. Li R H, Chen Z Y, Wu W . Generalized Difference Methods for Differential Equations:Numerical Analysis of Finite Volume Methods. New York: Marcel Dikker, 2000
16. Li R H . Generalized difference methods for a nonlinear Dirichlet problem. SIAM J Numer Anal, 1987, 24(1): 77–88. doi:10.1137/0724007
17. Mishev I D . Finite volume and finite volume element methods for non-symmetricproblems. Texas A&M Univ Tech ReptISC-96-04-MATH, 1997
18. Mishev I D . Finite volume element methods for non-definite problems. Numer Math, 1999, 83(1): 161–175. doi:10.1007/s002110050443
19. Rui H X . Symmetric modified finite volume element methods for self-adjointelliptic and parabolic problems. J CompAppl Math, 2002, 146(2): 373–386. doi:10.1016/S0377-0427(02)00370-9
20. Schatz A H . An observation concerning Ritz-Galerkin methods with indefinite bilinearforms. Math Comp, 1974, 28(128): 959–962. doi:10.2307/2005357
21. Schatz A H, Wang J . Some new estimates for Ritz-Galerkinmethods with minimal regularity assumptions. Math Comp, 1996, 65(213): 19–27. doi:10.1090/S0025-5718-96-00649-7
22. Schmidt T . Boxschemes on quadrilateral meshes. Computing, 1994, 66(3): 271–292
23. Tabata M . Afinite element approximation corresponding to the upwind finite difference. Memoirs of Numer Mathematics, 1977, 4(1): 47–63