Convergence analysis of an upwind finite volume element method with Crouzeix-Raviart element for non-selfadjoint and indefinite problems

Hongxing Rui, Chunjia Bi

Front. Math. China ›› 2008, Vol. 3 ›› Issue (4) : 563-579.

PDF(210 KB)
PDF(210 KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (4) : 563-579. DOI: 10.1007/s11464-008-0034-9
Research Article

Convergence analysis of an upwind finite volume element method with Crouzeix-Raviart element for non-selfadjoint and indefinite problems

Author information +
History +

Abstract

In this paper we construct an upwind finite volume element scheme based on the Crouzeix-Raviart nonconforming element for non-selfadjoint elliptic problems. These problems often appear in dealing with flow in porous media. We establish the optimal order H1-norm error estimate. We also give the uniform convergence under minimal elliptic regularity assumption

Keywords

Finite volume element (FVE) method / upwind method / Crouzeix-Raviart element / optimal order convergence / uniform convergence / convection-diffusion problem

Cite this article

Download citation ▾
Hongxing Rui, Chunjia Bi. Convergence analysis of an upwind finite volume element method with Crouzeix-Raviart element for non-selfadjoint and indefinite problems. Front. Math. China, 2008, 3(4): 563‒579 https://doi.org/10.1007/s11464-008-0034-9

References

[1.]
Baba K., Tabata M. On a conservative upwind finite element scheme for convective diffusion equations. RAIRO Numer Anal, 1981, 15(1): 3-25.
[2.]
Bank R. E., Rose D. J. Some error estimates for the box method. SIAM J Numer Anal, 1987, 24(4): 777-787.
CrossRef Google scholar
[3.]
Bi C. J., Li L. K. The mortar finite volume method with the Crouzeix-Raviart element for elliptic problems. Comp Meth Appl Mech Engrg, 2003, 192(1): 15-31.
CrossRef Google scholar
[4.]
Cai Z. On the finite volume element method. Numer Math, 1991, 58(1): 713-735.
CrossRef Google scholar
[5.]
Cai Z., Mandel J., McCormick S. The finite volume element method for diffusion equations on general triangulations. SIAM J Numer Anal, 1991, 28(2): 392-402.
CrossRef Google scholar
[6.]
Chatzipantelidis P. A finite volume method based on the Crouzeix-Raviart element for elliptic PDE′s in two dimensions. Numer Math, 1999, 82(3): 409-432.
CrossRef Google scholar
[7.]
Chatzipantelidis P. Finite volume methods for elliptic PDE′s: A new approach. Mathematical Modelling and Numerical Analysis, 2002, 36(2): 307-324.
CrossRef Google scholar
[8.]
Chen J. R., Li L. K. Convergence and domain decomposition for nonconforming and mixed element methods for non-selfadjoint and indefinite problems. Comp Meth Appl Mech Engrg, 1999, 173(1): 1-20.
CrossRef Google scholar
[9.]
Chen J. R., Li L. K. Uniform convergence and preconditioning methods for projection nonconforming and mixed methods for non-selfadjoint and indefinite problems. Comp Meth Appl Mech Engrg, 2000, 185(1): 75-89.
CrossRef Google scholar
[10.]
Ciarlet P. The Finite Element Method for Elliptic Problems, 1978, Amsterdam: North-Holland
CrossRef Google scholar
[11.]
Crouzeix M., Raviart P. A. Conforming and non-conforming finite element methods for solving the stationary Stokes equations. RAIRO Anal Numer, 1973, 7(1): 33-76.
[12.]
Ewing R. E., Lin T., Lin Y. P. On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J Numer Anal, 2002, 39(6): 1865-1888.
CrossRef Google scholar
[13.]
Huang J. G., Xi S. T. On the finite volume element method for general self-adjoint elliptic problems. SIAM J Numer Anal, 1998, 35(5): 1762-1774.
CrossRef Google scholar
[14.]
Li L. K., Chen J. R. Uniform convergence and preconditioning method for mortar mixed element method for nonselfadjoint and indefinite problems. Comp Meth Appl Mech Engrg, 2000, 189(3): 943-960.
CrossRef Google scholar
[15.]
Li R. H., Chen Z. Y., Wu W. Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, 2000, New York: Marcel Dikker.
[16.]
Li R. H. Generalized difference methods for a nonlinear Dirichlet problem. SIAM J Numer Anal, 1987, 24(1): 77-88.
CrossRef Google scholar
[17.]
Mishev I D. Finite volume and finite volume element methods for non-symmetric problems. Texas A&M Univ Tech Rept ISC-96-04-MATH, 1997
[18.]
Mishev I. D. Finite volume element methods for non-definite problems. Numer Math, 1999, 83(1): 161-175.
CrossRef Google scholar
[19.]
Rui H. X. Symmetric modified finite volume element methods for self-adjoint elliptic and parabolic problems. J Comp Appl Math, 2002, 146(2): 373-386.
CrossRef Google scholar
[20.]
Schatz A. H. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math Comp, 1974, 28(128): 959-962.
CrossRef Google scholar
[21.]
Schatz A. H., Wang J. Some new estimates for Ritz-Galerkin methods with minimal regularity assumptions. Math Comp, 1996, 65(213): 19-27.
CrossRef Google scholar
[22.]
Schmidt T. Box schemes on quadrilateral meshes. Computing, 1994, 66(3): 271-292.
[23.]
Tabata M. A finite element approximation corresponding to the upwind finite difference. Memoirs of Numer Mathematics, 1977, 4(1): 47-63.
AI Summary AI Mindmap
PDF(210 KB)

Accesses

Citations

Detail

Sections
Recommended

/