Frontiers of Mathematics in China >
Tight monomials for type B3
Received date: 15 Jan 2012
Accepted date: 22 Nov 2013
Published date: 01 Feb 2014
Copyright
The global crystal basis or canonical basis plays an important role in the theory of the quantized enveloping algebras and their representations. The tight monomials are the simplest elements in the canonical basis. We discuss the tight monomials in quantized enveloping algebra of type B3.
Key words: Quantized enveloping algebra; canonical basis; tight monomial
Xiaoming WANG . Tight monomials for type B3[J]. Frontiers of Mathematics in China, 2014 , 9(1) : 213 -238 . DOI: 10.1007/s11464-013-0342-6
1 |
Caldero P, Marsh R, Morier-Genoud S. Realisation of Lusztig cones. Represent Theory, 2004, 8: 458-478
|
2 |
Deng B, Du J. Tight monomials and the monomial basis property. J Algebra, 2010, 324: 458-478
|
3 |
Deng B, Du J, Parashall B, Wang J. Finite Dimensional Algebras and Quantum Groups. Mathematical Surveys and Monographs, Vol 150. Providence: Amer Math Soc, 2008
|
4 |
Hu Y, Ye J, Yue X. Canonical basis for type A4—monomial elements. J Algebra, 2003, 263: 228-245
|
5 |
Lusztig G. Canonical bases arising from quantized enveloping algebras. J Amer Math Soc, 1990, 3: 447-498
|
6 |
Lusztig G. Quivers, perverse sheaves, and the quantized enveloping algebras. J Amer Math Soc, 1991, 4: 366-421
|
7 |
Lusztig G. Tight monomials in quantized enveloping algebras. Israel Math Conf Proc, 1993, 7: 117-132
|
8 |
Lusztig G. Introduction to Quantum Groups. Boston: Birkhäuser, 1993
|
9 |
Marsh R. More tight monomials in quantized enveloping algebras. J Algebra, 1998, 204: 711-732
|
10 |
Reineke M. Monomials in canonical bases of quantum groups and quadratic forms. J Pure Appl Algebra, 2001, 157: 301-309
|
11 |
Wang X. Tight monomials for type G2 and A3.Comm Algebra, 2010, 38: 3597-3615
|
12 |
Wang X. Tight monomials for quantum enveloping algebras of rank-2 Kac-Moody Lie algebras. J Pure Appl Algebra, 2012, 216: 694-708
|
13 |
Xi N. Canonical basis for type B2.J Algebra, 1999, 214: 8-21
|
14 |
Xi N. Canonical basis for type A3.Comm Algebra, 1999, 27: 5703-5710
|
/
〈 | 〉 |