RESEARCH ARTICLE

Tight monomials for type B3

  • Xiaoming WANG
Expand
  • College of Information Technology, Shanghai Ocean University, Shanghai 201306, China

Received date: 15 Jan 2012

Accepted date: 22 Nov 2013

Published date: 01 Feb 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The global crystal basis or canonical basis plays an important role in the theory of the quantized enveloping algebras and their representations. The tight monomials are the simplest elements in the canonical basis. We discuss the tight monomials in quantized enveloping algebra of type B3.

Cite this article

Xiaoming WANG . Tight monomials for type B3[J]. Frontiers of Mathematics in China, 2014 , 9(1) : 213 -238 . DOI: 10.1007/s11464-013-0342-6

1
Caldero P, Marsh R, Morier-Genoud S. Realisation of Lusztig cones. Represent Theory, 2004, 8: 458-478

DOI

2
Deng B, Du J. Tight monomials and the monomial basis property. J Algebra, 2010, 324: 458-478

DOI

3
Deng B, Du J, Parashall B, Wang J. Finite Dimensional Algebras and Quantum Groups. Mathematical Surveys and Monographs, Vol 150. Providence: Amer Math Soc, 2008

DOI

4
Hu Y, Ye J, Yue X. Canonical basis for type A4—monomial elements. J Algebra, 2003, 263: 228-245

DOI

5
Lusztig G. Canonical bases arising from quantized enveloping algebras. J Amer Math Soc, 1990, 3: 447-498

DOI

6
Lusztig G. Quivers, perverse sheaves, and the quantized enveloping algebras. J Amer Math Soc, 1991, 4: 366-421

DOI

7
Lusztig G. Tight monomials in quantized enveloping algebras. Israel Math Conf Proc, 1993, 7: 117-132

8
Lusztig G. Introduction to Quantum Groups. Boston: Birkhäuser, 1993

9
Marsh R. More tight monomials in quantized enveloping algebras. J Algebra, 1998, 204: 711-732

DOI

10
Reineke M. Monomials in canonical bases of quantum groups and quadratic forms. J Pure Appl Algebra, 2001, 157: 301-309

DOI

11
Wang X. Tight monomials for type G2 and A3.Comm Algebra, 2010, 38: 3597-3615

DOI

12
Wang X. Tight monomials for quantum enveloping algebras of rank-2 Kac-Moody Lie algebras. J Pure Appl Algebra, 2012, 216: 694-708

DOI

13
Xi N. Canonical basis for type B2.J Algebra, 1999, 214: 8-21

DOI

14
Xi N. Canonical basis for type A3.Comm Algebra, 1999, 27: 5703-5710

DOI

Options
Outlines

/