Tight monomials for type B3

Xiaoming WANG

PDF(212 KB)
PDF(212 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (1) : 213-238. DOI: 10.1007/s11464-013-0342-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Tight monomials for type B3

Author information +
History +

Abstract

The global crystal basis or canonical basis plays an important role in the theory of the quantized enveloping algebras and their representations. The tight monomials are the simplest elements in the canonical basis. We discuss the tight monomials in quantized enveloping algebra of type B3.

Keywords

Quantized enveloping algebra / canonical basis / tight monomial

Cite this article

Download citation ▾
Xiaoming WANG. Tight monomials for type B3. Front Math Chin, 2014, 9(1): 213‒238 https://doi.org/10.1007/s11464-013-0342-6

References

[1]
Caldero P, Marsh R, Morier-Genoud S. Realisation of Lusztig cones. Represent Theory, 2004, 8: 458-478
CrossRef Google scholar
[2]
Deng B, Du J. Tight monomials and the monomial basis property. J Algebra, 2010, 324: 458-478
CrossRef Google scholar
[3]
Deng B, Du J, Parashall B, Wang J. Finite Dimensional Algebras and Quantum Groups. Mathematical Surveys and Monographs, Vol 150. Providence: Amer Math Soc, 2008
CrossRef Google scholar
[4]
Hu Y, Ye J, Yue X. Canonical basis for type A4—monomial elements. J Algebra, 2003, 263: 228-245
CrossRef Google scholar
[5]
Lusztig G. Canonical bases arising from quantized enveloping algebras. J Amer Math Soc, 1990, 3: 447-498
CrossRef Google scholar
[6]
Lusztig G. Quivers, perverse sheaves, and the quantized enveloping algebras. J Amer Math Soc, 1991, 4: 366-421
CrossRef Google scholar
[7]
Lusztig G. Tight monomials in quantized enveloping algebras. Israel Math Conf Proc, 1993, 7: 117-132
[8]
Lusztig G. Introduction to Quantum Groups. Boston: Birkhäuser, 1993
[9]
Marsh R. More tight monomials in quantized enveloping algebras. J Algebra, 1998, 204: 711-732
CrossRef Google scholar
[10]
Reineke M. Monomials in canonical bases of quantum groups and quadratic forms. J Pure Appl Algebra, 2001, 157: 301-309
CrossRef Google scholar
[11]
Wang X. Tight monomials for type G2 and A3.Comm Algebra, 2010, 38: 3597-3615
CrossRef Google scholar
[12]
Wang X. Tight monomials for quantum enveloping algebras of rank-2 Kac-Moody Lie algebras. J Pure Appl Algebra, 2012, 216: 694-708
CrossRef Google scholar
[13]
Xi N. Canonical basis for type B2.J Algebra, 1999, 214: 8-21
CrossRef Google scholar
[14]
Xi N. Canonical basis for type A3.Comm Algebra, 1999, 27: 5703-5710
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(212 KB)

Accesses

Citations

Detail

Sections
Recommended

/