RESEARCH ARTICLE

Positive eigenvalue-eigenvector of nonlinear positive mappings

  • Yisheng SONG , 1,2 ,
  • Liqun QI 1
Expand
  • 1. Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
  • 2. College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China

Received date: 15 May 2012

Accepted date: 02 Nov 2012

Published date: 01 Feb 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We show that an (eventually) strongly increasing and positively homogeneous mapping T defined on a Banach space can be turned into an Edelstein contraction with respect to Hilbert’s projective metric. By applying the Edelstein contraction theorem, a nonlinear version of the famous Krein-Rutman theorem is presented, and a simple iteration process {Tkx/ ||Tkx||}(xP+) is given for finding a positive eigenvector with positive eigenvalue of T. In particular, the eigenvalue problem of a nonnegative tensor A can be viewed as the fixed point problem of the Edelstein contraction with respect to Hilbert’s projective metric. As a result, the nonlinear Perron-Frobenius property of a nonnegative tensor A is reached easily.

Cite this article

Yisheng SONG , Liqun QI . Positive eigenvalue-eigenvector of nonlinear positive mappings[J]. Frontiers of Mathematics in China, 2014 , 9(1) : 181 -199 . DOI: 10.1007/s11464-013-0258-1

1
Birkhoff G. Extensions of Jentzch’s theorem. Trans Amer Math Soc, 1957, 85: 219-227

2
Bushell P J. On the projective contraction ratio for positive linear mappings. J Lond Math Soc, 1973, 6: 256-258

DOI

3
Bushell P J. Hilbert’s metric and positive contraction mappings in a Banach space. Arch Rat Mech Anal, 1973, 52: 330-338

DOI

4
Bushell P J. The Cayley-Hilbert metric and positive operators. Linear Algebra Appl, 1986, 84: 271-280

DOI

5
Chang K C. A nonlinear Krein Rutman theorem. J Syst Sci Complex, 2009, 22(4): 542-554

DOI

6
Chang K C, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507-520

DOI

7
Chang K C, Pearson K, Zhang T. Primitivity, the convergence of the NQZ method and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl, 2011, 32(3): 806-819

DOI

8
Deimling K. Nonlinear Functional Analysis. New York: Springer-Verlag, 1988

9
Edelstein M. On fixed and periodic points under contractive mappings. J Lond Math Soc, 1962, 37: 74-79

DOI

10
Friedland S, Gauber S, Han L. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl, 2013, 438(2): 738-749

DOI

11
Hilbert D. Über die gerade Linie als kürzeste Verbindung zweier Punkte. Math Ann, 1895, 46: 91-96

DOI

12
Hu S, Huang Z, Qi L. Finding the spectral radius of a nonnegative tensor. Department of Applied Mathematics, The Hong Kong Polytechnic University. 2010, preprint

13
Huang M J, Huang C Y, Tsai T M. Applications of Hilbert’s projective metric to a class of positive nonlinear operators. Linear Algebra Appl, 2006, 413: 202-211

DOI

14
Huang M J, Huang C Y, Tsai T M. Eigenvalue problems and fixed point theorems for a class of positive nonlinear operators. Math Z, 2007, 257: 581-595

DOI

15
Kohlberg E. The Perron-Frobenius theorem without additivity. J Math Economics, 1982, 10: 299-303

DOI

16
Kohlberg E, Pratt J W. The contraction mapping approach to the Perron-Frobenius theorem: Why Hilbert’s metric? Math Oper Res, 1982, 7: 198-210

DOI

17
Krause U. Perron’s stability theorem for nonlinear mappings. J Math Economics, 1986, 15: 275-282

DOI

18
Lim L H. Singular values and eigenvalues of tensors: A variational approach. In: Proc 1st IEEE International Workshop on Computational Advances of Multi-tensor Adaptive Processing, Dec 13-15, 2005. 2005, 129-132

19
Mahadevan R. A note on a non-linear Krein-Rutman theorem. Nonlinear Anal, 2007, 67: 3084-3090

DOI

20
Nussbaum R D. Hilbert’s Projective Metric and Iterated Nonlinear Maps. Mem Amer Math Soc, No 391. Providence: Amer Math Soc, 1988

21
Nussbaum R D. Iterated Nonlinear Maps and Hilbert’s Projective Metric, II. Mem Amer Math Soc, No 401. Providence: Amer Math Soc, 1989

22
Ogiwara T. Nonlinear Perron-Frobenius problem for order-preserving mappings, I. Proc Japan Acad Ser A Math Sci, 1993, 69: 312-316

DOI

23
Ogiwara T. Nonlinear Perron-Frobenius problem for order-preserving mappings, II. Applications. Proc Japan Acad Ser A Math Sci, 1993, 69: 317-321

DOI

24
Potter A J P. Applications of Hilbert’s projective metric to certain classes of non-homogeneous operators. Quart J Math Oxford, 1977, 28: 93-99

DOI

25
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324

DOI

26
Qi L. Eigenvalues and invariants of tensors. J Math Anal Appl, 2007, 325: 1363-1377

DOI

Options
Outlines

/