RESEARCH ARTICLE

Asymptotic behavior for bi-fractional regression models via Malliavin calculus

  • Guangjun SHEN 1 ,
  • Litan YAN , 2
Expand
  • 1. Department of Mathematics, Anhui Normal University, Wuhu 241000, China
  • 2. Department of Mathematics, Donghua University, Shanghai 201620, China

Received date: 02 Aug 2012

Accepted date: 27 May 2013

Published date: 01 Feb 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Let BH1,K1 and BH2,K2 be two independent bi-fractional Brownian motions. In this paper, as a natural extension to the fractional regression model, we consider the asymptotic behavior of the sequence

Sn:=i=0n-1K(nαBiH1,K1)(Bi+1H2,K2-BiH2,K2),
where K is a standard Gaussian kernel function and the bandwidth parameter αsatisfies certain hypotheses. We show that its limiting distribution is a mixed normal law involving the local time of the bi-fractional Brownian motion BH1,K1. We also give the stable convergence of the sequence Sn by using the techniques of the Malliavin calculus.

Cite this article

Guangjun SHEN , Litan YAN . Asymptotic behavior for bi-fractional regression models via Malliavin calculus[J]. Frontiers of Mathematics in China, 2014 , 9(1) : 151 -179 . DOI: 10.1007/s11464-013-0312-z

1
Alós E, Mazet O, Nualart D. Stochastic calculus with respect to Gaussian processes. Ann Probab, 2001, 29: 766-801

DOI

2
Biagini F, Hu Y, Oksendal B, Zhang T. Stochastic Calculus for Fractional Brownian Motion and Applications. London: Springer-Verlag, 2008

DOI

3
Bourguin S, Tudor C A. Asymptotic theory for fractional regression models via Malliavin calculus. J Theoret Probab, 2012, 25: 536-564

DOI

4
Chen Z. Polar functions of multiparameter bifractional Brownian Sheets. Acta Math Appl Sin Engl Ser, 2009, 25: 255-572

DOI

5
Chen Z, Li H. Polar sets of multiparameter bifractional Brownian sheets. Acta Math Sci Ser B, 2010, 30: 857-872

DOI

6
Duncan T E, Hu Y, Duncan B P. Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J Control Optim, 2000, 38: 582-612

DOI

7
Eddahbi M, Lacayo R, Sole J L, Tudor C A, Vives J. Regularity of the local time for the d-dimensional fractional Brownian motion with N-parameters. Stoch Anal Appl, 2001, 23: 383-400

DOI

8
Es-sebaiy K, Tudor C A. Multidimensional bifractional Brownian motion: Itô and Tanaka formulas. Stoch Dyn, 2007, 7: 366-388

DOI

9
Geman D, Horowitz J. Occupation densities. Ann Probab, 1980, 8: 1-67

DOI

10
Houdré C, Villa J. An example of infinite dimensional quasi-helix. Stoch Models, 2003, 336: 195-201

11
Jiang Y, Wang Y. Self-intersection local times and collision local times of bifractional Brownian motions. Sci China Ser A, 2009, 52: 1905-1919

DOI

12
Karlsen H A, Mykklebust T, Tjostheim D. Nonparametric estimation in a nonlinear cointegrated model. Ann Statistics, 2007, 35: 252-299

DOI

13
Karlsen H A, Tjostheim D. Nonparametric estimation in null recurrent time series. Ann Statistics, 2001, 29: 372-416

DOI

14
Kruk I, Russo F, Tudor C A. Wiener integrals, Malliavin calculus and covariance measure structure. J Funct Anal, 2007, 249: 92-142

DOI

15
Luan N. Hausdorff measures of the image, graph and level set of bifractional Brownian motion. Sci China Math, 2010, 53: 2973-2992

DOI

16
Nualart D. Malliavin Calculus and Related Topics. New York: Springer, 2006

17
Russo F, Tudor C A. On the bifractional Brownian motion. Stochastic Process Appl, 2006, 5: 830-856

DOI

18
Schienle M. Nonparametric Nonstationary Regression. Ph D Thesis. Mannheim: University of Mannheim, 2008

19
Shen G, Yan L. Smoothness for the collision local times of bifractional Brownian motions. Sci China Math, 2011, 54: 1859-1873

DOI

20
Tudor C A, Xiao Y. Sample path properties of bifractional brownian motion. Bernoulli, 2007, 13: 1023-1052

DOI

21
Wang Q, Phillips P C B. Asymptotic theory for the local time density estimation and nonparametric cointegrated regression. Econometric Theory, 2009, 25: 710-738

DOI

22
Wang Q, Phillips P C B. Structural nonparametric cointegrating regression. Econometrica, 2009, 77: 1901-1948

DOI

23
Wang W. On p-variation of bifractional Brownian motion. Appl Math J Chinese Univ, 2011, 26: 127-141

DOI

24
Yan L, Gao B, Liu J. Quadratic covariation and the Bouleau-Yor identity for a bi-fractional Brownian motion. Preprint, 2012

25
Yan L, Liu J, Chen C. On the collision local time of bifractional Brownian motions. Stoch Dyn, 2009, 9: 479-491

DOI

26
Yan L, Xiang J. The generalized quadratic covariation for a bi-fBm. J Nat Sci Heilongjiang Univ, 2011, 28: 20-37

Options
Outlines

/