Asymptotic behavior for bi-fractional regression models via Malliavin calculus

Guangjun SHEN , Litan YAN

Front. Math. China ›› 2014, Vol. 9 ›› Issue (1) : 151 -179.

PDF (240KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (1) : 151 -179. DOI: 10.1007/s11464-013-0312-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Asymptotic behavior for bi-fractional regression models via Malliavin calculus

Author information +
History +
PDF (240KB)

Abstract

Let BH1,K1 and BH2,K2 be two independent bi-fractional Brownian motions. In this paper, as a natural extension to the fractional regression model, we consider the asymptotic behavior of the sequence

Sn:=i=0n-1K(nαBiH1,K1)(Bi+1H2,K2-BiH2,K2),
where K is a standard Gaussian kernel function and the bandwidth parameter αsatisfies certain hypotheses. We show that its limiting distribution is a mixed normal law involving the local time of the bi-fractional Brownian motion BH1,K1. We also give the stable convergence of the sequence Sn by using the techniques of the Malliavin calculus.

Keywords

Bi-fractional Brownian motion (bi-fBm) / Malliavin calculus / regression model

Cite this article

Download citation ▾
Guangjun SHEN, Litan YAN. Asymptotic behavior for bi-fractional regression models via Malliavin calculus. Front. Math. China, 2014, 9(1): 151-179 DOI:10.1007/s11464-013-0312-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alós E, Mazet O, Nualart D. Stochastic calculus with respect to Gaussian processes. Ann Probab, 2001, 29: 766-801

[2]

Biagini F, Hu Y, Oksendal B, Zhang T. Stochastic Calculus for Fractional Brownian Motion and Applications. London: Springer-Verlag, 2008

[3]

Bourguin S, Tudor C A. Asymptotic theory for fractional regression models via Malliavin calculus. J Theoret Probab, 2012, 25: 536-564

[4]

Chen Z. Polar functions of multiparameter bifractional Brownian Sheets. Acta Math Appl Sin Engl Ser, 2009, 25: 255-572

[5]

Chen Z, Li H. Polar sets of multiparameter bifractional Brownian sheets. Acta Math Sci Ser B, 2010, 30: 857-872

[6]

Duncan T E, Hu Y, Duncan B P. Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J Control Optim, 2000, 38: 582-612

[7]

Eddahbi M, Lacayo R, Sole J L, Tudor C A, Vives J. Regularity of the local time for the d-dimensional fractional Brownian motion with N-parameters. Stoch Anal Appl, 2001, 23: 383-400

[8]

Es-sebaiy K, Tudor C A. Multidimensional bifractional Brownian motion: Itô and Tanaka formulas. Stoch Dyn, 2007, 7: 366-388

[9]

Geman D, Horowitz J. Occupation densities. Ann Probab, 1980, 8: 1-67

[10]

Houdré C, Villa J. An example of infinite dimensional quasi-helix. Stoch Models, 2003, 336: 195-201

[11]

Jiang Y, Wang Y. Self-intersection local times and collision local times of bifractional Brownian motions. Sci China Ser A, 2009, 52: 1905-1919

[12]

Karlsen H A, Mykklebust T, Tjostheim D. Nonparametric estimation in a nonlinear cointegrated model. Ann Statistics, 2007, 35: 252-299

[13]

Karlsen H A, Tjostheim D. Nonparametric estimation in null recurrent time series. Ann Statistics, 2001, 29: 372-416

[14]

Kruk I, Russo F, Tudor C A. Wiener integrals, Malliavin calculus and covariance measure structure. J Funct Anal, 2007, 249: 92-142

[15]

Luan N. Hausdorff measures of the image, graph and level set of bifractional Brownian motion. Sci China Math, 2010, 53: 2973-2992

[16]

Nualart D. Malliavin Calculus and Related Topics. New York: Springer, 2006

[17]

Russo F, Tudor C A. On the bifractional Brownian motion. Stochastic Process Appl, 2006, 5: 830-856

[18]

Schienle M. Nonparametric Nonstationary Regression. Ph D Thesis. Mannheim: University of Mannheim, 2008

[19]

Shen G, Yan L. Smoothness for the collision local times of bifractional Brownian motions. Sci China Math, 2011, 54: 1859-1873

[20]

Tudor C A, Xiao Y. Sample path properties of bifractional brownian motion. Bernoulli, 2007, 13: 1023-1052

[21]

Wang Q, Phillips P C B. Asymptotic theory for the local time density estimation and nonparametric cointegrated regression. Econometric Theory, 2009, 25: 710-738

[22]

Wang Q, Phillips P C B. Structural nonparametric cointegrating regression. Econometrica, 2009, 77: 1901-1948

[23]

Wang W. On p-variation of bifractional Brownian motion. Appl Math J Chinese Univ, 2011, 26: 127-141

[24]

Yan L, Gao B, Liu J. Quadratic covariation and the Bouleau-Yor identity for a bi-fractional Brownian motion. Preprint, 2012

[25]

Yan L, Liu J, Chen C. On the collision local time of bifractional Brownian motions. Stoch Dyn, 2009, 9: 479-491

[26]

Yan L, Xiang J. The generalized quadratic covariation for a bi-fBm. J Nat Sci Heilongjiang Univ, 2011, 28: 20-37

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (240KB)

780

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/