Asymptotic behavior for bi-fractional regression models via Malliavin calculus

Guangjun SHEN, Litan YAN

PDF(241 KB)
PDF(241 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (1) : 151-179. DOI: 10.1007/s11464-013-0312-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Asymptotic behavior for bi-fractional regression models via Malliavin calculus

Author information +
History +

Abstract

Let BH1,K1 and BH2,K2 be two independent bi-fractional Brownian motions. In this paper, as a natural extension to the fractional regression model, we consider the asymptotic behavior of the sequence

Sn:=i=0n-1K(nαBiH1,K1)(Bi+1H2,K2-BiH2,K2),
where K is a standard Gaussian kernel function and the bandwidth parameter αsatisfies certain hypotheses. We show that its limiting distribution is a mixed normal law involving the local time of the bi-fractional Brownian motion BH1,K1. We also give the stable convergence of the sequence Sn by using the techniques of the Malliavin calculus.

Keywords

Bi-fractional Brownian motion (bi-fBm) / Malliavin calculus / regression model

Cite this article

Download citation ▾
Guangjun SHEN, Litan YAN. Asymptotic behavior for bi-fractional regression models via Malliavin calculus. Front Math Chin, 2014, 9(1): 151‒179 https://doi.org/10.1007/s11464-013-0312-z

References

[1]
Alós E, Mazet O, Nualart D. Stochastic calculus with respect to Gaussian processes. Ann Probab, 2001, 29: 766-801
CrossRef Google scholar
[2]
Biagini F, Hu Y, Oksendal B, Zhang T. Stochastic Calculus for Fractional Brownian Motion and Applications. London: Springer-Verlag, 2008
CrossRef Google scholar
[3]
Bourguin S, Tudor C A. Asymptotic theory for fractional regression models via Malliavin calculus. J Theoret Probab, 2012, 25: 536-564
CrossRef Google scholar
[4]
Chen Z. Polar functions of multiparameter bifractional Brownian Sheets. Acta Math Appl Sin Engl Ser, 2009, 25: 255-572
CrossRef Google scholar
[5]
Chen Z, Li H. Polar sets of multiparameter bifractional Brownian sheets. Acta Math Sci Ser B, 2010, 30: 857-872
CrossRef Google scholar
[6]
Duncan T E, Hu Y, Duncan B P. Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J Control Optim, 2000, 38: 582-612
CrossRef Google scholar
[7]
Eddahbi M, Lacayo R, Sole J L, Tudor C A, Vives J. Regularity of the local time for the d-dimensional fractional Brownian motion with N-parameters. Stoch Anal Appl, 2001, 23: 383-400
CrossRef Google scholar
[8]
Es-sebaiy K, Tudor C A. Multidimensional bifractional Brownian motion: Itô and Tanaka formulas. Stoch Dyn, 2007, 7: 366-388
CrossRef Google scholar
[9]
Geman D, Horowitz J. Occupation densities. Ann Probab, 1980, 8: 1-67
CrossRef Google scholar
[10]
Houdré C, Villa J. An example of infinite dimensional quasi-helix. Stoch Models, 2003, 336: 195-201
[11]
Jiang Y, Wang Y. Self-intersection local times and collision local times of bifractional Brownian motions. Sci China Ser A, 2009, 52: 1905-1919
CrossRef Google scholar
[12]
Karlsen H A, Mykklebust T, Tjostheim D. Nonparametric estimation in a nonlinear cointegrated model. Ann Statistics, 2007, 35: 252-299
CrossRef Google scholar
[13]
Karlsen H A, Tjostheim D. Nonparametric estimation in null recurrent time series. Ann Statistics, 2001, 29: 372-416
CrossRef Google scholar
[14]
Kruk I, Russo F, Tudor C A. Wiener integrals, Malliavin calculus and covariance measure structure. J Funct Anal, 2007, 249: 92-142
CrossRef Google scholar
[15]
Luan N. Hausdorff measures of the image, graph and level set of bifractional Brownian motion. Sci China Math, 2010, 53: 2973-2992
CrossRef Google scholar
[16]
Nualart D. Malliavin Calculus and Related Topics. New York: Springer, 2006
[17]
Russo F, Tudor C A. On the bifractional Brownian motion. Stochastic Process Appl, 2006, 5: 830-856
CrossRef Google scholar
[18]
Schienle M. Nonparametric Nonstationary Regression. Ph D Thesis. Mannheim: University of Mannheim, 2008
[19]
Shen G, Yan L. Smoothness for the collision local times of bifractional Brownian motions. Sci China Math, 2011, 54: 1859-1873
CrossRef Google scholar
[20]
Tudor C A, Xiao Y. Sample path properties of bifractional brownian motion. Bernoulli, 2007, 13: 1023-1052
CrossRef Google scholar
[21]
Wang Q, Phillips P C B. Asymptotic theory for the local time density estimation and nonparametric cointegrated regression. Econometric Theory, 2009, 25: 710-738
CrossRef Google scholar
[22]
Wang Q, Phillips P C B. Structural nonparametric cointegrating regression. Econometrica, 2009, 77: 1901-1948
CrossRef Google scholar
[23]
Wang W. On p-variation of bifractional Brownian motion. Appl Math J Chinese Univ, 2011, 26: 127-141
CrossRef Google scholar
[24]
Yan L, Gao B, Liu J. Quadratic covariation and the Bouleau-Yor identity for a bi-fractional Brownian motion. Preprint, 2012
[25]
Yan L, Liu J, Chen C. On the collision local time of bifractional Brownian motions. Stoch Dyn, 2009, 9: 479-491
CrossRef Google scholar
[26]
Yan L, Xiang J. The generalized quadratic covariation for a bi-fBm. J Nat Sci Heilongjiang Univ, 2011, 28: 20-37

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(241 KB)

Accesses

Citations

Detail

Sections
Recommended

/