Frontiers of Mathematics in China >
Skew-commutator relations and Gröbner-Shirshov basis of quantum group of type F4
Received date: 29 Jan 2013
Accepted date: 23 Sep 2013
Published date: 01 Feb 2014
Copyright
We give a Gröbner-Shirshov basis of quantum group of type F4 by using the Ringel-Hall algebra approach. We compute all skew-commutator relations between the isoclasses of indecomposable representations of Ringel-Hall algebras of type F4 by using an ‘inductive’ method. Precisely, we do not use the traditional way of computing the skew-commutative relations, that is first compute all Hall polynomials then compute the corresponding skewcommutator relations; instead, we compute the ‘easier’ skew-commutator relations which correspond to those exact sequences with middle term indecomposable or the split exact sequences first, then ‘deduce’ others from these ‘easier’ ones and this in turn gives Hall polynomials as a byproduct. Then using the composition-diamond lemma prove that the set of these relations constitute a minimal Gröbner-Shirshov basis of the positive part of the quantum group of type F4. Dually, we get a Gröbner-Shirshov basis of the negative part of the quantum group of type F4. And finally, we give a Gröbner-Shirshov basis for the whole quantum group of type F4.
Chengxiu QIANG , Abdukadir OBUL . Skew-commutator relations and Gröbner-Shirshov basis of quantum group of type F4[J]. Frontiers of Mathematics in China, 2014 , 9(1) : 135 -150 . DOI: 10.1007/s11464-013-0333-7
1 |
Bergman G M. The diamond lemma for ring theory. Adv Math, 1978, 29: 178-218
|
2 |
Bokut L A. Imbeddings into simple associative algebras. Algebra and Logic, 1976, 15: 117-142
|
3 |
Bokut L A, Malcolmson P. Gröbner-Shirshov basis for quantum enveloping algebras. Israel J Math, 1996, 96: 97-113
|
4 |
Buchberger B. An algorithm for finding a basis for the residue class ring of a zerodimensional ideal. Ph D Thesis, University of Innsbruck. 1965
|
5 |
Deng B M, Du J. Frobenius morphisms and representations of algebras. Trans Amer Math Soc, 2006, 358(8): 3591-3622
|
6 |
Deng B M, Du J, Parshal B, Wang J P. Finite Dimensional Algebra and Quantum Groups. Mathematical Surveys and Monographs, Vol 150. Providence: Amer Math Soc, 2008
|
7 |
Dlab V, Ringel C M. Indecomposable Representations of Graphs and Algebras. Memoirs Amer Math Soc, No 173. Providence: Amer Math Soc, 1976
|
8 |
Drinfel’d V G. Hopf algebras and the quantum Yang-Baxter equation. Dokl Akad Nauk SSSR, 1985, 283(5): 1060-1064
|
9 |
Jantzen J C. Lectures on Quantum Groups. Graduate Studies in Mathematics, No 6. Providence: Amer Math Soc, 1996
|
10 |
Jimbo M. A q-difference analogue of U(G) and the Yang-Baxter equation. Lett Math Phys, 1985, 10(1): 63-69
|
11 |
Obul A, Yunus G. Gröbner-Shirshov basis of quantum group of type E6.J Algebra, 2011, 346: 248-265
|
12 |
Ren Y H, Obul A. Gröbner-Shirshov basis of quantum group of type G2. Comm Algebra, 2011, 39(5): 1510-1518
|
13 |
Ringel C M. Hall algebras and quantum groups. Invent Math, 1990, 101: 583-592
|
14 |
Ringel C M. Hall polynomials for the representation-finite hereditary algebras. Adv Math, 1990, 84: 137-178
|
15 |
Ringel C M. PBW-bases of quantum groups. J Reine Angew Math, 1996, 470: 51-88
|
16 |
Rosso M. Finite dimensional representations of the quantum analogue of the enveloping algebra of a complex simple Lie algebra. Comm Math Phys, 1988, 117: 581-593
|
17 |
Shirshov A I. Some algorithmic problems for Lie algebras. Sib Math J, 1962, 3: 292-296
|
18 |
Yamane H. A Poincaré-Birkhoff-Witt theorem for quantized universal enveloping algebras of type An.Publ Res Inst Math Sci Kyoto Univ, 1989, 25: 503-520
|
19 |
Yunus G, Obul A. Gröbner-Shirshov basis of quantum group of type D4. Chin Ann Math Ser B, 2011, 32(4): 581-592
|
/
〈 | 〉 |