RESEARCH ARTICLE

Skew-commutator relations and Gröbner-Shirshov basis of quantum group of type F4

  • Chengxiu QIANG ,
  • Abdukadir OBUL
Expand
  • College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China

Received date: 29 Jan 2013

Accepted date: 23 Sep 2013

Published date: 01 Feb 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We give a Gröbner-Shirshov basis of quantum group of type F4 by using the Ringel-Hall algebra approach. We compute all skew-commutator relations between the isoclasses of indecomposable representations of Ringel-Hall algebras of type F4 by using an ‘inductive’ method. Precisely, we do not use the traditional way of computing the skew-commutative relations, that is first compute all Hall polynomials then compute the corresponding skewcommutator relations; instead, we compute the ‘easier’ skew-commutator relations which correspond to those exact sequences with middle term indecomposable or the split exact sequences first, then ‘deduce’ others from these ‘easier’ ones and this in turn gives Hall polynomials as a byproduct. Then using the composition-diamond lemma prove that the set of these relations constitute a minimal Gröbner-Shirshov basis of the positive part of the quantum group of type F4. Dually, we get a Gröbner-Shirshov basis of the negative part of the quantum group of type F4. And finally, we give a Gröbner-Shirshov basis for the whole quantum group of type F4.

Cite this article

Chengxiu QIANG , Abdukadir OBUL . Skew-commutator relations and Gröbner-Shirshov basis of quantum group of type F4[J]. Frontiers of Mathematics in China, 2014 , 9(1) : 135 -150 . DOI: 10.1007/s11464-013-0333-7

1
Bergman G M. The diamond lemma for ring theory. Adv Math, 1978, 29: 178-218

DOI

2
Bokut L A. Imbeddings into simple associative algebras. Algebra and Logic, 1976, 15: 117-142

DOI

3
Bokut L A, Malcolmson P. Gröbner-Shirshov basis for quantum enveloping algebras. Israel J Math, 1996, 96: 97-113

DOI

4
Buchberger B. An algorithm for finding a basis for the residue class ring of a zerodimensional ideal. Ph D Thesis, University of Innsbruck. 1965

5
Deng B M, Du J. Frobenius morphisms and representations of algebras. Trans Amer Math Soc, 2006, 358(8): 3591-3622

DOI

6
Deng B M, Du J, Parshal B, Wang J P. Finite Dimensional Algebra and Quantum Groups. Mathematical Surveys and Monographs, Vol 150. Providence: Amer Math Soc, 2008

DOI

7
Dlab V, Ringel C M. Indecomposable Representations of Graphs and Algebras. Memoirs Amer Math Soc, No 173. Providence: Amer Math Soc, 1976

8
Drinfel’d V G. Hopf algebras and the quantum Yang-Baxter equation. Dokl Akad Nauk SSSR, 1985, 283(5): 1060-1064

9
Jantzen J C. Lectures on Quantum Groups. Graduate Studies in Mathematics, No 6. Providence: Amer Math Soc, 1996

10
Jimbo M. A q-difference analogue of U(G) and the Yang-Baxter equation. Lett Math Phys, 1985, 10(1): 63-69

DOI

11
Obul A, Yunus G. Gröbner-Shirshov basis of quantum group of type E6.J Algebra, 2011, 346: 248-265

DOI

12
Ren Y H, Obul A. Gröbner-Shirshov basis of quantum group of type G2. Comm Algebra, 2011, 39(5): 1510-1518

DOI

13
Ringel C M. Hall algebras and quantum groups. Invent Math, 1990, 101: 583-592

DOI

14
Ringel C M. Hall polynomials for the representation-finite hereditary algebras. Adv Math, 1990, 84: 137-178

DOI

15
Ringel C M. PBW-bases of quantum groups. J Reine Angew Math, 1996, 470: 51-88

16
Rosso M. Finite dimensional representations of the quantum analogue of the enveloping algebra of a complex simple Lie algebra. Comm Math Phys, 1988, 117: 581-593

DOI

17
Shirshov A I. Some algorithmic problems for Lie algebras. Sib Math J, 1962, 3: 292-296

18
Yamane H. A Poincaré-Birkhoff-Witt theorem for quantized universal enveloping algebras of type An.Publ Res Inst Math Sci Kyoto Univ, 1989, 25: 503-520

DOI

19
Yunus G, Obul A. Gröbner-Shirshov basis of quantum group of type D4. Chin Ann Math Ser B, 2011, 32(4): 581-592

DOI

Options
Outlines

/