Skew-commutator relations and Gr?bner-Shirshov basis of quantum group of type
Chengxiu QIANG, Abdukadir OBUL
Skew-commutator relations and Gr?bner-Shirshov basis of quantum group of type
We give a Gröbner-Shirshov basis of quantum group of type F4 by using the Ringel-Hall algebra approach. We compute all skew-commutator relations between the isoclasses of indecomposable representations of Ringel-Hall algebras of type F4 by using an ‘inductive’ method. Precisely, we do not use the traditional way of computing the skew-commutative relations, that is first compute all Hall polynomials then compute the corresponding skewcommutator relations; instead, we compute the ‘easier’ skew-commutator relations which correspond to those exact sequences with middle term indecomposable or the split exact sequences first, then ‘deduce’ others from these ‘easier’ ones and this in turn gives Hall polynomials as a byproduct. Then using the composition-diamond lemma prove that the set of these relations constitute a minimal Gröbner-Shirshov basis of the positive part of the quantum group of type F4. Dually, we get a Gröbner-Shirshov basis of the negative part of the quantum group of type F4. And finally, we give a Gröbner-Shirshov basis for the whole quantum group of type F4.
Ringel-Hall algebra / root vector / indecomposable module / Gröbner-Shirshov basis
[1] |
Bergman G M. The diamond lemma for ring theory. Adv Math, 1978, 29: 178-218
CrossRef
Google scholar
|
[2] |
Bokut L A. Imbeddings into simple associative algebras. Algebra and Logic, 1976, 15: 117-142
CrossRef
Google scholar
|
[3] |
Bokut L A, Malcolmson P. Gröbner-Shirshov basis for quantum enveloping algebras. Israel J Math, 1996, 96: 97-113
CrossRef
Google scholar
|
[4] |
Buchberger B. An algorithm for finding a basis for the residue class ring of a zerodimensional ideal. Ph D Thesis, University of Innsbruck. 1965
|
[5] |
Deng B M, Du J. Frobenius morphisms and representations of algebras. Trans Amer Math Soc, 2006, 358(8): 3591-3622
CrossRef
Google scholar
|
[6] |
Deng B M, Du J, Parshal B, Wang J P. Finite Dimensional Algebra and Quantum Groups. Mathematical Surveys and Monographs, Vol 150. Providence: Amer Math Soc, 2008
CrossRef
Google scholar
|
[7] |
Dlab V, Ringel C M. Indecomposable Representations of Graphs and Algebras. Memoirs Amer Math Soc, No 173. Providence: Amer Math Soc, 1976
|
[8] |
Drinfel’d V G. Hopf algebras and the quantum Yang-Baxter equation. Dokl Akad Nauk SSSR, 1985, 283(5): 1060-1064
|
[9] |
Jantzen J C. Lectures on Quantum Groups. Graduate Studies in Mathematics, No 6. Providence: Amer Math Soc, 1996
|
[10] |
Jimbo M. A q-difference analogue of U(G) and the Yang-Baxter equation. Lett Math Phys, 1985, 10(1): 63-69
CrossRef
Google scholar
|
[11] |
Obul A, Yunus G. Gröbner-Shirshov basis of quantum group of type E6.J Algebra, 2011, 346: 248-265
CrossRef
Google scholar
|
[12] |
Ren Y H, Obul A. Gröbner-Shirshov basis of quantum group of type G2. Comm Algebra, 2011, 39(5): 1510-1518
CrossRef
Google scholar
|
[13] |
Ringel C M. Hall algebras and quantum groups. Invent Math, 1990, 101: 583-592
CrossRef
Google scholar
|
[14] |
Ringel C M. Hall polynomials for the representation-finite hereditary algebras. Adv Math, 1990, 84: 137-178
CrossRef
Google scholar
|
[15] |
Ringel C M. PBW-bases of quantum groups. J Reine Angew Math, 1996, 470: 51-88
|
[16] |
Rosso M. Finite dimensional representations of the quantum analogue of the enveloping algebra of a complex simple Lie algebra. Comm Math Phys, 1988, 117: 581-593
CrossRef
Google scholar
|
[17] |
Shirshov A I. Some algorithmic problems for Lie algebras. Sib Math J, 1962, 3: 292-296
|
[18] |
Yamane H. A Poincaré-Birkhoff-Witt theorem for quantized universal enveloping algebras of type An.Publ Res Inst Math Sci Kyoto Univ, 1989, 25: 503-520
CrossRef
Google scholar
|
[19] |
Yunus G, Obul A. Gröbner-Shirshov basis of quantum group of type D4. Chin Ann Math Ser B, 2011, 32(4): 581-592
CrossRef
Google scholar
|
/
〈 | 〉 |