RESEARCH ARTICLE

Multiplication formulas for Kubert functions

  • Hailong LI 1 ,
  • Jing MA , 2 ,
  • Yuichi URAMATSU 3
Expand
  • 1. Department of Mathematics, Weinan Teachers’ University, Weinan 714000, China
  • 2. School of Mathematics, Jilin University, Changchun 130012, China
  • 3. Graduate School of Advanced Technology, Kinki University, Iizuka, Fukuoka 820-8555, Japan

Received date: 21 Oct 2013

Accepted date: 25 Nov 2013

Published date: 01 Feb 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The aim of this paper is two folds. First, we shall prove a general reduction theorem to the Spannenintegral of products of (generalized) Kubert functions. Second, we apply the special case of Carlitz’s theorem to the elaboration of earlier results on the mean values of the product of Dirichlet L-functions at integer arguments. Carlitz’s theorem is a generalization of a classical result of Nielsen in 1923. Regarding the reduction theorem, we shall unify both the results of Carlitz (for sums) and Mordell (for integrals), both of which are generalizations of preceding results by Frasnel, Landau, Mikolás, and Romanoff et al. These not only generalize earlier results but also cover some recent results. For example, Beck’s lamma is the same as Carlitz’s result, while some results of Maier may be deduced from those of Romanoff. To this end, we shall consider the Stiletjes integral which incorporates both sums and integrals. Now, we have an expansion of the sum of products of Bernoulli polynomials that we may apply it to elaborate on the results of afore-mentioned papers and can supplement them by related results.

Cite this article

Hailong LI , Jing MA , Yuichi URAMATSU . Multiplication formulas for Kubert functions[J]. Frontiers of Mathematics in China, 2014 , 9(1) : 101 -109 . DOI: 10.1007/s11464-013-0348-0

1
Apostol T M. Mathematical Analysis. Reading: Addison-Wesley Publishing Company, Inc, 1957

2
Apostol T M, Vu T H. Identities for sums of Dedekind type. J Number Theory, 1982, 14: 391-396

DOI

3
Beck M. Dedekind cotangent sums. Acta Arith, 2003, 109: 109-130

DOI

4
Berndt B C. A generalization of a theorem of Gauss on sums involving [x]. Amer Math Monthly, 1973, 82: 44-51

DOI

5
Carlitz L. Some finite summation formulas of arithmetic character. Publ Math Debrecen, 1959, 6: 262-268

6
Espinosa O, Moll V. On some integrals involving the Hurwitz zeta-function: Part 1. Ramanujan J, 2002, 6: 159-188

DOI

7
Espinosa O, Moll V. On some integrals involving the Hurwitz zeta-function: Part 2. Ramanujan J, 2002, 6: 449-468

DOI

8
Franel J. Les suites de Farey et le probl`eme des nombres premiers. Nachr Math Ges Wiss Gtingen, 1924: 198-201

9
Fukuhara S, Yui N. A generating function for higher-dimensional Apostol-Zagier sums and their reciprocity law. J Number Theory, 2006, 117: 87-105

DOI

10
Hashimoto M, Kanemitsu S, Li H L. Examples of the Hurwitz transform. J Math Soc Japan, 2009, 61: 651-660

DOI

11
Kanemitsu S, Li H L, Ma J. Some results on Kubert functions (in preparation)

12
Kanmeitsu S, Ma J, Zhang W P. On the discrete mean value of the product of two Dirichlet L-functions. Abh Math Sem Univ Hamburg, 2009, 79: 149-164

DOI

13
Kanemitsu S, Tsukada H. Vistas of Special Functions. Singapore-London-New York: World Scientific, 2007

14
Katsurada M, Matsumoto K. The mean values of Dirichlet L-function at integer points and class numbers of cyclotomic fields. Nagoya Math J, 1994, 134: 151-172

15
Knopp M. Hecke operators and an identity for Dedekind sums. J Number Theory, 1980, 12: 2-9

DOI

16
Kozuka K. Dedekind type sums attached to Dirichlet characters. Kyushu J Math, 2004, 58: 1-24

DOI

17
Kozuka K. Some identities for multiple Dedekind sums attached to Dirichlet characters. Acta Arith, 2011, 146: 103-114

DOI

18
Landau E. Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel. Nachr Math Ges Wiss Göttingen, 1924: 202-206

19
Landau E. Vorlesungen über Zahlentheorie, B. II. Lepzig, 1927

20
Liu G D, Wang N L, Wang X H. The discrete mean square of Dirichlet L-function at integral arguments. Proc Japan Acad Ser A Math Sci, 2010, 86(9): 149-153

DOI

21
Maier H. Cyclotomic polynomials whose orders contain many prime factors. Period Math Hungar, 2001, 43: 155-164

DOI

22
Mikolás M. Mellinsche Transformation und Orthogonalität bei ζ(s, u). Verallgemeinrung der Riemannschen Funktionalgleichung von ζ(s). Acta Sci Math (Szeged), 1956, 17: 143-164

23
Mikolás M. Integral formulae of arithmetical characteristics relating to the zeta-function of Hurwitz. Publ Math Debrecen, 1957, 5: 44-53

24
Mikolás M. On certain sums generating the Dedekind sums. Pacific J Math, 1957, 7: 1167-1178

DOI

25
Milnor J. On polylogarithms, Hurwitz zeta-functions, and the Kubert identities Enseign Math, 1983, 29(2): 281-322

26
Mordell L J. Integral formulae of arithmetical character. J Lond Math Soc, 1958, 33: 371-375

DOI

27
Nagasaka C. Dedekind type sums and Hecke operators. Acta Arith, 1984, 44: 207-214

28
Nielsen N. Traitéélémentaire des nombres de Bernoulli. Paris: Gauther-Villars, 1923

29
Parson L A, Rosen K. Hecek operators and generalized Dedekind sum. Math Scand, 1981, 49: 5-14

30
Romanoff N P. Hilbert spaces and number theory II. Izv Akad Nauk SSSR, Ser Mat, 1951, 15: 131-152

31
Sun Z W. On covering equivalence. In: Jia Ch-H,Matsumoto K, eds. Analytic Number Theory. Dordrecht: Kluwer, 2002, 277-302

DOI

32
Walum H. Multiplication formulae for periodic functions. Pacific J Math, 1991, 149(2): 383-396

DOI

33
Widder D W. Advanced Calculus. 2nd ed. New York: Dover Publ, 1989

34
Zheng Z. The Petersson-Knopp identity for the homogenous Dedekind sums. J Number Theory, 1996, 57: 223-230

DOI

Options
Outlines

/