Multiplication formulas for Kubert functions
Hailong LI, Jing MA, Yuichi URAMATSU
Multiplication formulas for Kubert functions
The aim of this paper is two folds. First, we shall prove a general reduction theorem to the Spannenintegral of products of (generalized) Kubert functions. Second, we apply the special case of Carlitz’s theorem to the elaboration of earlier results on the mean values of the product of Dirichlet L-functions at integer arguments. Carlitz’s theorem is a generalization of a classical result of Nielsen in 1923. Regarding the reduction theorem, we shall unify both the results of Carlitz (for sums) and Mordell (for integrals), both of which are generalizations of preceding results by Frasnel, Landau, Mikolás, and Romanoff et al. These not only generalize earlier results but also cover some recent results. For example, Beck’s lamma is the same as Carlitz’s result, while some results of Maier may be deduced from those of Romanoff. To this end, we shall consider the Stiletjes integral which incorporates both sums and integrals. Now, we have an expansion of the sum of products of Bernoulli polynomials that we may apply it to elaborate on the results of afore-mentioned papers and can supplement them by related results.
Kubert function / multiplication formula / integral formula / Bernoulli polynomial / mean value
[1] |
Apostol T M. Mathematical Analysis. Reading: Addison-Wesley Publishing Company, Inc, 1957
|
[2] |
Apostol T M, Vu T H. Identities for sums of Dedekind type. J Number Theory, 1982, 14: 391-396
CrossRef
Google scholar
|
[3] |
Beck M. Dedekind cotangent sums. Acta Arith, 2003, 109: 109-130
CrossRef
Google scholar
|
[4] |
Berndt B C. A generalization of a theorem of Gauss on sums involving [x]. Amer Math Monthly, 1973, 82: 44-51
CrossRef
Google scholar
|
[5] |
Carlitz L. Some finite summation formulas of arithmetic character. Publ Math Debrecen, 1959, 6: 262-268
|
[6] |
Espinosa O, Moll V. On some integrals involving the Hurwitz zeta-function: Part 1. Ramanujan J, 2002, 6: 159-188
CrossRef
Google scholar
|
[7] |
Espinosa O, Moll V. On some integrals involving the Hurwitz zeta-function: Part 2. Ramanujan J, 2002, 6: 449-468
CrossRef
Google scholar
|
[8] |
Franel J. Les suites de Farey et le probl`eme des nombres premiers. Nachr Math Ges Wiss Gtingen, 1924: 198-201
|
[9] |
Fukuhara S, Yui N. A generating function for higher-dimensional Apostol-Zagier sums and their reciprocity law. J Number Theory, 2006, 117: 87-105
CrossRef
Google scholar
|
[10] |
Hashimoto M, Kanemitsu S, Li H L. Examples of the Hurwitz transform. J Math Soc Japan, 2009, 61: 651-660
CrossRef
Google scholar
|
[11] |
Kanemitsu S, Li H L, Ma J. Some results on Kubert functions (in preparation)
|
[12] |
Kanmeitsu S, Ma J, Zhang W P. On the discrete mean value of the product of two Dirichlet L-functions. Abh Math Sem Univ Hamburg, 2009, 79: 149-164
CrossRef
Google scholar
|
[13] |
Kanemitsu S, Tsukada H. Vistas of Special Functions. Singapore-London-New York: World Scientific, 2007
|
[14] |
Katsurada M, Matsumoto K. The mean values of Dirichlet L-function at integer points and class numbers of cyclotomic fields. Nagoya Math J, 1994, 134: 151-172
|
[15] |
Knopp M. Hecke operators and an identity for Dedekind sums. J Number Theory, 1980, 12: 2-9
CrossRef
Google scholar
|
[16] |
Kozuka K. Dedekind type sums attached to Dirichlet characters. Kyushu J Math, 2004, 58: 1-24
CrossRef
Google scholar
|
[17] |
Kozuka K. Some identities for multiple Dedekind sums attached to Dirichlet characters. Acta Arith, 2011, 146: 103-114
CrossRef
Google scholar
|
[18] |
Landau E. Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel. Nachr Math Ges Wiss Göttingen, 1924: 202-206
|
[19] |
Landau E. Vorlesungen über Zahlentheorie, B. II. Lepzig, 1927
|
[20] |
Liu G D, Wang N L, Wang X H. The discrete mean square of Dirichlet L-function at integral arguments. Proc Japan Acad Ser A Math Sci, 2010, 86(9): 149-153
CrossRef
Google scholar
|
[21] |
Maier H. Cyclotomic polynomials whose orders contain many prime factors. Period Math Hungar, 2001, 43: 155-164
CrossRef
Google scholar
|
[22] |
Mikolás M. Mellinsche Transformation und Orthogonalität bei ζ(s, u). Verallgemeinrung der Riemannschen Funktionalgleichung von ζ(s). Acta Sci Math (Szeged), 1956, 17: 143-164
|
[23] |
Mikolás M. Integral formulae of arithmetical characteristics relating to the zeta-function of Hurwitz. Publ Math Debrecen, 1957, 5: 44-53
|
[24] |
Mikolás M. On certain sums generating the Dedekind sums. Pacific J Math, 1957, 7: 1167-1178
CrossRef
Google scholar
|
[25] |
Milnor J. On polylogarithms, Hurwitz zeta-functions, and the Kubert identities Enseign Math, 1983, 29(2): 281-322
|
[26] |
Mordell L J. Integral formulae of arithmetical character. J Lond Math Soc, 1958, 33: 371-375
CrossRef
Google scholar
|
[27] |
Nagasaka C. Dedekind type sums and Hecke operators. Acta Arith, 1984, 44: 207-214
|
[28] |
Nielsen N. Traitéélémentaire des nombres de Bernoulli. Paris: Gauther-Villars, 1923
|
[29] |
Parson L A, Rosen K. Hecek operators and generalized Dedekind sum. Math Scand, 1981, 49: 5-14
|
[30] |
Romanoff N P. Hilbert spaces and number theory II. Izv Akad Nauk SSSR, Ser Mat, 1951, 15: 131-152
|
[31] |
Sun Z W. On covering equivalence. In: Jia Ch-H,Matsumoto K, eds. Analytic Number Theory. Dordrecht: Kluwer, 2002, 277-302
CrossRef
Google scholar
|
[32] |
Walum H. Multiplication formulae for periodic functions. Pacific J Math, 1991, 149(2): 383-396
CrossRef
Google scholar
|
[33] |
Widder D W. Advanced Calculus. 2nd ed. New York: Dover Publ, 1989
|
[34] |
Zheng Z. The Petersson-Knopp identity for the homogenous Dedekind sums. J Number Theory, 1996, 57: 223-230
CrossRef
Google scholar
|
/
〈 | 〉 |