RESEARCH ARTICLE

Moderate deviations and central limit theorem for small perturbation Wishart processes

  • Lei CHEN ,
  • Fuqing GAO ,
  • Shaochen WANG
Expand
  • School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Received date: 06 Mar 2012

Accepted date: 07 Jun 2012

Published date: 01 Feb 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Let Xϵ be a small perturbation Wishart process with values in the set of positive definite matrices of size m, i.e., the process Xϵ is the solution of stochastic differential equation with non-Lipschitz diffusion coefficient: dXtϵ=ϵXtϵdBt+dBt'ϵXtϵ+ρImdt, X0 = x, where B is an m × m matrix valued Brownian motion and B′denotes the transpose of the matrix B. In this paper, we prove that {Xtϵ-Xt0/ϵh2(ϵ),ϵ>0} satisfies a large deviation principle, and (Xtϵ-Xt0)/ϵ converges to a Gaussian process, where h(ϵ)+ and ϵh(ϵ)0 as ϵ0. A moderate deviation principle and a functional central limit theorem for the eigenvalue process of Xϵ are also obtained by the delta method.

Cite this article

Lei CHEN , Fuqing GAO , Shaochen WANG . Moderate deviations and central limit theorem for small perturbation Wishart processes[J]. Frontiers of Mathematics in China, 2014 , 9(1) : 1 -15 . DOI: 10.1007/s11464-013-0291-0

1
Bru M F. Diffusions of perturbed principal component analysis. J Multivariate Anal, 1989, 29(1): 127-136

DOI

2
Bru M F. Wishart processes. J Theoret Probab, 1991, 4(4): 725-751

DOI

3
Dembo A, Zeitouni O. Large Deviations Techniques and Applications. Berlin: Springer-Verlag, 2009

4
Donati-Martin C. Large deviations for Wishart processes. Probab Math Statist, 2008, 28(2): 325-343

5
Donati-Martin C, Doumerc Y, Matsumoto H, Yor M. Some properties of the Wishart processes and a matrix extension of the Hartman-Watson laws. Universités de Paris 6 and Paris 7-CNRS (UMR 7599), 2003

6
Donati-Martin C, Rouault A, Yor M, Zani M. Large deviations for squares of Bessel and Ornstein-Uhlenbeck processes. Probab Theory Related Fields, 2004, 129(2): 261-289

DOI

7
Gao F Q, Zhao X Q. Delta method in large deviations and moderate deviations for estimators. Ann Statist, 2011, 39(2): 1211-1240

DOI

8
Guillin A. Averaging principle of SDE with small diffusion: Moderate deviations. Ann Probab, 2003, 31(1): 413-443

DOI

9
Guionnet A. Large Random Matrices: Lectures on Mcroscopic Asymptotics. Berlin: Springer, 2009

DOI

10
Ma Y T, Wang R, Wu L M. Moderate deviation principle for dynamical systems with small random perturbation. arXiv: 1107.3432, July 2011

11
Muirhead R J. Aspects of Multivariate Statistical Theory. New York: Wiley, 1982

DOI

12
Revuz D, Yor M. Continuous Martingales and Brownian Motion. Berlin: Springer-Verlag, 1999

DOI

13
Stewart G W, Sun J. Matrix Perturbation Theory. New York: Academic Press, 1990

14
Van der Vaart A W, Wellner J A. Weak Convergence and Empirical Processes with Application to Statistics. New York: Springer-Verlag, 1996

DOI

Options
Outlines

/