Moderate deviations and central limit theorem for small perturbation Wishart processes

Lei CHEN, Fuqing GAO, Shaochen WANG

PDF(151 KB)
PDF(151 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (1) : 1-15. DOI: 10.1007/s11464-013-0291-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Moderate deviations and central limit theorem for small perturbation Wishart processes

Author information +
History +

Abstract

Let Xϵ be a small perturbation Wishart process with values in the set of positive definite matrices of size m, i.e., the process Xϵ is the solution of stochastic differential equation with non-Lipschitz diffusion coefficient: dXtϵ=ϵXtϵdBt+dBt'ϵXtϵ+ρImdt, X0 = x, where B is an m × m matrix valued Brownian motion and B′denotes the transpose of the matrix B. In this paper, we prove that {Xtϵ-Xt0/ϵh2(ϵ),ϵ>0} satisfies a large deviation principle, and (Xtϵ-Xt0)/ϵ converges to a Gaussian process, where h(ϵ)+ and ϵh(ϵ)0 as ϵ0. A moderate deviation principle and a functional central limit theorem for the eigenvalue process of Xϵ are also obtained by the delta method.

Keywords

Large deviation / moderate deviation / central limit theorem / Wishart process / eigenvalue

Cite this article

Download citation ▾
Lei CHEN, Fuqing GAO, Shaochen WANG. Moderate deviations and central limit theorem for small perturbation Wishart processes. Front Math Chin, 2014, 9(1): 1‒15 https://doi.org/10.1007/s11464-013-0291-0

References

[1]
Bru M F. Diffusions of perturbed principal component analysis. J Multivariate Anal, 1989, 29(1): 127-136
CrossRef Google scholar
[2]
Bru M F. Wishart processes. J Theoret Probab, 1991, 4(4): 725-751
CrossRef Google scholar
[3]
Dembo A, Zeitouni O. Large Deviations Techniques and Applications. Berlin: Springer-Verlag, 2009
[4]
Donati-Martin C. Large deviations for Wishart processes. Probab Math Statist, 2008, 28(2): 325-343
[5]
Donati-Martin C, Doumerc Y, Matsumoto H, Yor M. Some properties of the Wishart processes and a matrix extension of the Hartman-Watson laws. Universités de Paris 6 and Paris 7-CNRS (UMR 7599), 2003
[6]
Donati-Martin C, Rouault A, Yor M, Zani M. Large deviations for squares of Bessel and Ornstein-Uhlenbeck processes. Probab Theory Related Fields, 2004, 129(2): 261-289
CrossRef Google scholar
[7]
Gao F Q, Zhao X Q. Delta method in large deviations and moderate deviations for estimators. Ann Statist, 2011, 39(2): 1211-1240
CrossRef Google scholar
[8]
Guillin A. Averaging principle of SDE with small diffusion: Moderate deviations. Ann Probab, 2003, 31(1): 413-443
CrossRef Google scholar
[9]
Guionnet A. Large Random Matrices: Lectures on Mcroscopic Asymptotics. Berlin: Springer, 2009
CrossRef Google scholar
[10]
Ma Y T, Wang R, Wu L M. Moderate deviation principle for dynamical systems with small random perturbation. arXiv: 1107.3432, July 2011
[11]
Muirhead R J. Aspects of Multivariate Statistical Theory. New York: Wiley, 1982
CrossRef Google scholar
[12]
Revuz D, Yor M. Continuous Martingales and Brownian Motion. Berlin: Springer-Verlag, 1999
CrossRef Google scholar
[13]
Stewart G W, Sun J. Matrix Perturbation Theory. New York: Academic Press, 1990
[14]
Van der Vaart A W, Wellner J A. Weak Convergence and Empirical Processes with Application to Statistics. New York: Springer-Verlag, 1996
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(151 KB)

Accesses

Citations

Detail

Sections
Recommended

/