RESEARCH ARTICLE

Sharp distortion theorems for a subclass of close-to-convex mappings

  • Qinghua XU , 1 ,
  • Taishun LIU 2 ,
  • Xiaosong LIU 3
Expand
  • 1. College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China
  • 2. Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China
  • 3. School of Mathematics and Computation Science, Zhanjiang Normal University, Zhanjiang 524048, China

Received date: 26 Feb 2013

Accepted date: 30 Jul 2013

Published date: 01 Dec 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We introduce the class of strongly close-to-convex mappings of order α in the unit ball of a complex Banach space, and then, we give the sharp distortion theorems for this class of mappings in the unit ball of a complex Hilbert space X or the unit polydisc in n. As an application, a sharp growth theorem for strongly close-to-convex mappings of order α is obtained.

Cite this article

Qinghua XU , Taishun LIU , Xiaosong LIU . Sharp distortion theorems for a subclass of close-to-convex mappings[J]. Frontiers of Mathematics in China, 2013 , 8(6) : 1425 -1436 . DOI: 10.1007/s11464-013-0325-7

1
Barnard R W, Fitzgerld C H, Gong S. A distortion theorem of biholomorphic convex mappings in ℂ2.Trans Amer Math Soc, 1994, 344: 907-924

2
Cartan H. Sur la possibilitéd’éntendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalents. In: Montel P, ed. Lecons sur les Fonctions Univalents on Mutivalents. Paris: Gauthier-Villar, 1933

3
Chu C H. Jordan triples and Riemannian symmetric spaces. Adv Math, 2008, 219: 2029-2057

DOI

4
Chu C H, Hamada H, Honda T, Kohr G. Distortion theorems for convex mappings on homogeneous balls. J Math Anal Appl, 2010, 369: 437-442

DOI

5
Chu C H, Mellon P. Jordan structures in Banach spaces and symmetric manifolds. Expo Math, 1998, 16: 157-180

6
Gong S, Liu T S. Distortion theorems for biholomorphic convex mappings on bounded convex circular domains. Chinese Ann Math Ser B, 1999, 20: 297-304

DOI

7
Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions. New York: Marcel Dekker, 2003

8
Graham I, Varolin D. Bloch constants in one and several variables. Pacific J Math, 1996, 174: 347-357

9
Hamada H, Honda T, Kohr G. Bohr’s theorem for holomorphic mappings with values in homogeneous balls. Israel J Math, 2009, 173: 177-187

DOI

10
Hamada H, Honda T, Kohr G. Linear invariance of locally biholomorphic mappings in the unit ball of a JB-triple. J Math Anal Appl, 2012, 385: 326-339

DOI

11
Hamada H, Honda T, Kohr G. Trace-order and a distortion theorem for linearly invariant families on the unit ball of a finite dimensional JB -triple. J Math Anal Appl, 2012, 396: 829-843

DOI

12
Hamada H, Honda T, Kohr G. Growth and distortion theorems for linearly invariant families on homogeneous unit balls in ℂn.J Math Anal Appl, 2013, 407: 398-412

DOI

13
Hamada H, Kohr G. Growth and distortion results for convex mappings in infinite dimensional spaces. Complex Var Theory Appl, 2002, 47: 291-301

DOI

14
Hamada H, Kohr G. Φ-like and convex mappings in infinite dimensional space. Rev Roumaine Math Pures Appl, 2002, 47: 315-328

15
Kaup W. A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math Z, 1983, 183: 503-529

DOI

16
Kaup W. Hermitian Jordan triple systems and the automorphisms of bounded symmetric domain. In: González S, ed. Non-Associative Algebra and Its Applications. Oviedo, 1993. Math Appl, Vol 303. Dordrecht: Kluwer Acad Publ, 1994

DOI

17
Lin Y Y, Hong Y. Some properties of holomorphic maps in Banach spaces. Acta Math Sinica (Chin Ser), 1995, 38: 234-241 (in Chinese)

18
Liu X S, Liu T S. On the precise growth, covering, and distortion theorems for normalized biholomorphic mappings. J Math Anal Appl, 2004, 295: 404-417

DOI

19
Liu X S, Liu T S. The sharp estimates for each item in the homogeneous polynomial expansions of a subclass of close-to-convex mappings. Sci Sin Math, 2010, 40: 1079-1090 (in Chinese)

20
Liu X S, Liu T S. The sharp distortion theorem for a subclass of close-to-convex mappings. Chinese Ann Math Ser A, 2012, 33: 91-100

21
Pommerenke C. On close-to-convex functions. Trans Amer Math Soc, 1965, 114: 176-186

DOI

22
Pommerenke C. Univalent Functions. Göttingen: Vandenhoeck & Ruprecht, 1975

23
Suffridge T J. Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions. In: Buckholtz J D, Suffridge T J, eds. Complex Analysis. Lecture Notes in Math, Vol 599. Berlin-Heidelberg-New York: Springer-Verlag, 1976, 146-159

24
Xu Q H, Liu T S, Liu X S. The sharp estimates of homogeneous expansions for the generalized class of close-to-quasi-convex mappings. J Math Anal Appl, 2012, 389: 781-791

DOI

25
Zhu Y, Liu M. Distortion theorems for biholomorphic convex mappings in Banach spaces. Complex Var Theory Appl, 2005, 50: 57-68

Options
Outlines

/