Sharp distortion theorems for a subclass of close-to-convex mappings

Qinghua XU, Taishun LIU, Xiaosong LIU

PDF(118 KB)
PDF(118 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (6) : 1425-1436. DOI: 10.1007/s11464-013-0325-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Sharp distortion theorems for a subclass of close-to-convex mappings

Author information +
History +

Abstract

We introduce the class of strongly close-to-convex mappings of order α in the unit ball of a complex Banach space, and then, we give the sharp distortion theorems for this class of mappings in the unit ball of a complex Hilbert space X or the unit polydisc in n. As an application, a sharp growth theorem for strongly close-to-convex mappings of order α is obtained.

Keywords

Distortion theorem / growth theorem / strongly close-to-convex mappings of order α

Cite this article

Download citation ▾
Qinghua XU, Taishun LIU, Xiaosong LIU. Sharp distortion theorems for a subclass of close-to-convex mappings. Front Math Chin, 2013, 8(6): 1425‒1436 https://doi.org/10.1007/s11464-013-0325-7

References

[1]
Barnard R W, Fitzgerld C H, Gong S. A distortion theorem of biholomorphic convex mappings in ℂ2.Trans Amer Math Soc, 1994, 344: 907-924
[2]
Cartan H. Sur la possibilitéd’éntendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalents. In: Montel P, ed. Lecons sur les Fonctions Univalents on Mutivalents. Paris: Gauthier-Villar, 1933
[3]
Chu C H. Jordan triples and Riemannian symmetric spaces. Adv Math, 2008, 219: 2029-2057
CrossRef Google scholar
[4]
Chu C H, Hamada H, Honda T, Kohr G. Distortion theorems for convex mappings on homogeneous balls. J Math Anal Appl, 2010, 369: 437-442
CrossRef Google scholar
[5]
Chu C H, Mellon P. Jordan structures in Banach spaces and symmetric manifolds. Expo Math, 1998, 16: 157-180
[6]
Gong S, Liu T S. Distortion theorems for biholomorphic convex mappings on bounded convex circular domains. Chinese Ann Math Ser B, 1999, 20: 297-304
CrossRef Google scholar
[7]
Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions. New York: Marcel Dekker, 2003
[8]
Graham I, Varolin D. Bloch constants in one and several variables. Pacific J Math, 1996, 174: 347-357
[9]
Hamada H, Honda T, Kohr G. Bohr’s theorem for holomorphic mappings with values in homogeneous balls. Israel J Math, 2009, 173: 177-187
CrossRef Google scholar
[10]
Hamada H, Honda T, Kohr G. Linear invariance of locally biholomorphic mappings in the unit ball of a JB-triple. J Math Anal Appl, 2012, 385: 326-339
CrossRef Google scholar
[11]
Hamada H, Honda T, Kohr G. Trace-order and a distortion theorem for linearly invariant families on the unit ball of a finite dimensional JB -triple. J Math Anal Appl, 2012, 396: 829-843
CrossRef Google scholar
[12]
Hamada H, Honda T, Kohr G. Growth and distortion theorems for linearly invariant families on homogeneous unit balls in ℂn.J Math Anal Appl, 2013, 407: 398-412
CrossRef Google scholar
[13]
Hamada H, Kohr G. Growth and distortion results for convex mappings in infinite dimensional spaces. Complex Var Theory Appl, 2002, 47: 291-301
CrossRef Google scholar
[14]
Hamada H, Kohr G. Φ-like and convex mappings in infinite dimensional space. Rev Roumaine Math Pures Appl, 2002, 47: 315-328
[15]
Kaup W. A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math Z, 1983, 183: 503-529
CrossRef Google scholar
[16]
Kaup W. Hermitian Jordan triple systems and the automorphisms of bounded symmetric domain. In: González S, ed. Non-Associative Algebra and Its Applications. Oviedo, 1993. Math Appl, Vol 303. Dordrecht: Kluwer Acad Publ, 1994
CrossRef Google scholar
[17]
Lin Y Y, Hong Y. Some properties of holomorphic maps in Banach spaces. Acta Math Sinica (Chin Ser), 1995, 38: 234-241 (in Chinese)
[18]
Liu X S, Liu T S. On the precise growth, covering, and distortion theorems for normalized biholomorphic mappings. J Math Anal Appl, 2004, 295: 404-417
CrossRef Google scholar
[19]
Liu X S, Liu T S. The sharp estimates for each item in the homogeneous polynomial expansions of a subclass of close-to-convex mappings. Sci Sin Math, 2010, 40: 1079-1090 (in Chinese)
[20]
Liu X S, Liu T S. The sharp distortion theorem for a subclass of close-to-convex mappings. Chinese Ann Math Ser A, 2012, 33: 91-100
[21]
Pommerenke C. On close-to-convex functions. Trans Amer Math Soc, 1965, 114: 176-186
CrossRef Google scholar
[22]
Pommerenke C. Univalent Functions. Göttingen: Vandenhoeck & Ruprecht, 1975
[23]
Suffridge T J. Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions. In: Buckholtz J D, Suffridge T J, eds. Complex Analysis. Lecture Notes in Math, Vol 599. Berlin-Heidelberg-New York: Springer-Verlag, 1976, 146-159
[24]
Xu Q H, Liu T S, Liu X S. The sharp estimates of homogeneous expansions for the generalized class of close-to-quasi-convex mappings. J Math Anal Appl, 2012, 389: 781-791
CrossRef Google scholar
[25]
Zhu Y, Liu M. Distortion theorems for biholomorphic convex mappings in Banach spaces. Complex Var Theory Appl, 2005, 50: 57-68

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(118 KB)

Accesses

Citations

Detail

Sections
Recommended

/