Sharp distortion theorems for a subclass of close-to-convex mappings

Qinghua Xu , Taishun Liu , Xiaosong Liu

Front. Math. China ›› 2013, Vol. 8 ›› Issue (6) : 1425 -1436.

PDF (118KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (6) : 1425 -1436. DOI: 10.1007/s11464-013-0325-7
Research Article
RESEARCH ARTICLE

Sharp distortion theorems for a subclass of close-to-convex mappings

Author information +
History +
PDF (118KB)

Abstract

We introduce the class of strongly close-to-convex mappings of order α in the unit ball of a complex Banach space, and then, we give the sharp distortion theorems for this class of mappings in the unit ball of a complex Hilbert space X or the unit polydisc in ℂ n. As an application, a sharp growth theorem for strongly close-to-convex mappings of order α is obtained.

Keywords

Distortion theorem / growth theorem / strongly close-to-convex mappings of order α

Cite this article

Download citation ▾
Qinghua Xu, Taishun Liu, Xiaosong Liu. Sharp distortion theorems for a subclass of close-to-convex mappings. Front. Math. China, 2013, 8(6): 1425-1436 DOI:10.1007/s11464-013-0325-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barnard R W, Fitzgerld C H, Gong S. A distortion theorem of biholomorphic convex mappings in ℂ2. Trans Amer Math Soc, 1994, 344: 907-924

[2]

Cartan H. Montel P. Sur la possibilité d’éntendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalents. Lecons sur les Fonctions Univalents on Mutivalents, 1933, Paris: Gauthier-Villar

[3]

Chu C H. Jordan triples and Riemannian symmetric spaces. Adv Math, 2008, 219: 2029-2057

[4]

Chu C H, Hamada H, Honda T, Kohr G. Distortion theorems for convex mappings on homogeneous balls. J Math Anal Appl, 2010, 369: 437-442

[5]

Chu C H, Mellon P. Jordan structures in Banach spaces and symmetric manifolds. Expo Math, 1998, 16: 157-180

[6]

Gong S, Liu T S. Distortion theorems for biholomorphic convex mappings on bounded convex circular domains. Chinese Ann Math Ser B, 1999, 20: 297-304

[7]

Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions, 2003, New York: Marcel Dekker

[8]

Graham I, Varolin D. Bloch constants in one and several variables. Pacific J Math, 1996, 174: 347-357

[9]

Hamada H, Honda T, Kohr G. Bohr’s theorem for holomorphic mappings with values in homogeneous balls. Israel J Math, 2009, 173: 177-187

[10]

Hamada H, Honda T, Kohr G. Linear invariance of locally biholomorphic mappings in the unit ball of a JB*-triple. J Math Anal Appl, 2012, 385: 326-339

[11]

Hamada H, Honda T, Kohr G. Trace-order and a distortion theorem for linearly invariant families on the unit ball of a finite dimensional JB*-triple. J Math Anal Appl, 2012, 396: 829-843

[12]

Hamada H, Honda T, Kohr G. Growth and distortion theorems for linearly invariant families on homogeneous unit balls in Cn. J Math Anal Appl, 2013, 407: 398-412

[13]

Hamada H, Kohr G. Growth and distortion results for convex mappings in infinite dimensional spaces. Complex Var Theory Appl, 2002, 47: 291-301

[14]

Hamada H, Kohr G. Φ-like and convex mappings in infinite dimensional space. Rev Roumaine Math Pures Appl, 2002, 47: 315-328

[15]

Kaup W. A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math Z, 1983, 183: 503-529

[16]

Kaup W. González S. Hermitian Jordan triple systems and the automorphisms of bounded symmetric domain. Non-Associative Algebra and Its Applications. Oviedo, 1993, 1994, Dordrecht: Kluwer Acad Publ

[17]

Lin Y Y, Hong Y. Some properties of holomorphic maps in Banach spaces. Acta Math Sinica (Chin Ser), 1995, 38: 234-241

[18]

Liu X S, Liu T S. On the precise growth, covering, and distortion theorems for normalized biholomorphic mappings. J Math Anal Appl, 2004, 295: 404-417

[19]

Liu X S, Liu T S. The sharp estimates for each item in the homogeneous polynomial expansions of a subclass of close-to-convex mappings. Sci Sin Math, 2010, 40: 1079-1090

[20]

Liu X S, Liu T S. The sharp distortion theorem for a subclass of close-to-convex mappings. Chinese Ann Math Ser A, 2012, 33: 91-100

[21]

Pommerenke C. On close-to-convex functions. Trans Amer Math Soc, 1965, 114: 176-186

[22]

Pommerenke C. Univalent Functions, 1975, Göttingen: Vandenhoeck & Ruprecht

[23]

Suffridge T J. Buckholtz J D, Suffridge T J. Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions. Complex Analysis. Lecture Notes in Math, Vol 599, 1976, Berlin-Heidelberg-New York: Springer-Verlag 146 159

[24]

Xu Q H, Liu T S, Liu X S. The sharp estimates of homogeneous expansions for the generalized class of close-to-quasi-convex mappings. J Math Anal Appl, 2012, 389: 781-791

[25]

Zhu Y, Liu M. Distortion theorems for biholomorphic convex mappings in Banach spaces. Complex Var Theory Appl, 2005, 50: 57-68

AI Summary AI Mindmap
PDF (118KB)

755

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/