Frontiers of Mathematics in China >
On minimal non--groups
Received date: 13 Jun 2012
Accepted date: 25 Feb 2013
Published date: 01 Dec 2013
Copyright
A finite group G is called an -group if every proper subgroup H of G is either subnormal in G or self-normalizing. We determinate the structure of non--groups in which all proper subgroups are -groups.
Key words:
Subnormal subgroup; self-normalizing subgroup;
Zhangjia HAN , Guiyun CHEN , Huaguo SHI . On minimal non--groups[J]. Frontiers of Mathematics in China, 2013 , 8(6) : 1295 -1306 . DOI: 10.1007/s11464-013-0299-5
1 |
Doerk K. Minimal nicht überauflösbare endliche Gruppen. Math Z, 1966, 91: 198-205
|
2 |
Guo P, Guo X. On minimal non-MSN-groups. Front Math China, 2011, 6(5): 847-854
|
3 |
Itô N. Über die Frattini-Gruppe einer endlichen Gruppe. Proc Japan Acad, 1955, 31: 327-328
|
4 |
King O H. The subgroup structure of finite classical groups in terms of geometric configurations. In: Surveys in Combinatorics. Lecture Note Series 327. Cambridge: Cambridge University Press, 2005, 29-56
|
5 |
Kurzweil H, Stellmacher B. The Theory of Finite Groups (An Introduction). New York: Springer, 2004
|
6 |
Laffey T J. A lemma on finite p-group and some consequences. Proc Cambr Phil Soc, 1974, 75: 133-137
|
7 |
Liu X, Xiao G. Finite groups with only subnormal or self-normal subgroups. J Sichuan Normal Univ, 2000, 23(5): 479-481 (in Chinese)
|
8 |
Miller G A, Moreno H C. Non-abelian groups in which every subgroup is abelian. Trans Amer Math Soc, 1903, 4: 398-404
|
9 |
Sastry N. On minimal non-PN-groups. J Algebra, 1980, 65: 104-109
|
10 |
Suzuki M. On a class of doubly transitive groups. Ann Math, 1962, 75(1): 105-145
|
11 |
Thompson J G. Nonsolvable finite groups all of whose local subgroups are solvable I. Bull Amer Math Soc, 1968, 74: 383-437
|
/
〈 | 〉 |