RESEARCH ARTICLE

On minimal non-I N I-groups

  • Zhangjia HAN 1,2 ,
  • Guiyun CHEN , 1 ,
  • Huaguo SHI 3
Expand
  • 1. School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
  • 2. School of Mathematics, Chengdu University of Information Technology, Chengdu 610225, China
  • 3. Sichuan Vocational and Technical College, Suining 629000, China

Received date: 13 Jun 2012

Accepted date: 25 Feb 2013

Published date: 01 Dec 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A finite group G is called an I N I-group if every proper subgroup H of G is either subnormal in G or self-normalizing. We determinate the structure of non-I N I-groups in which all proper subgroups are I N I-groups.

Cite this article

Zhangjia HAN , Guiyun CHEN , Huaguo SHI . On minimal non-I N I-groups[J]. Frontiers of Mathematics in China, 2013 , 8(6) : 1295 -1306 . DOI: 10.1007/s11464-013-0299-5

1
Doerk K. Minimal nicht überauflösbare endliche Gruppen. Math Z, 1966, 91: 198-205

DOI

2
Guo P, Guo X. On minimal non-MSN-groups. Front Math China, 2011, 6(5): 847-854

DOI

3
Itô N. Über die Frattini-Gruppe einer endlichen Gruppe. Proc Japan Acad, 1955, 31: 327-328

DOI

4
King O H. The subgroup structure of finite classical groups in terms of geometric configurations. In: Surveys in Combinatorics. Lecture Note Series 327. Cambridge: Cambridge University Press, 2005, 29-56

5
Kurzweil H, Stellmacher B. The Theory of Finite Groups (An Introduction). New York: Springer, 2004

6
Laffey T J. A lemma on finite p-group and some consequences. Proc Cambr Phil Soc, 1974, 75: 133-137

DOI

7
Liu X, Xiao G. Finite groups with only subnormal or self-normal subgroups. J Sichuan Normal Univ, 2000, 23(5): 479-481 (in Chinese)

8
Miller G A, Moreno H C. Non-abelian groups in which every subgroup is abelian. Trans Amer Math Soc, 1903, 4: 398-404

DOI

9
Sastry N. On minimal non-PN-groups. J Algebra, 1980, 65: 104-109

DOI

10
Suzuki M. On a class of doubly transitive groups. Ann Math, 1962, 75(1): 105-145

DOI

11
Thompson J G. Nonsolvable finite groups all of whose local subgroups are solvable I. Bull Amer Math Soc, 1968, 74: 383-437

DOI

Options
Outlines

/