On minimal non-I N I-groups

Zhangjia HAN, Guiyun CHEN, Huaguo SHI

PDF(129 KB)
PDF(129 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (6) : 1295-1306. DOI: 10.1007/s11464-013-0299-5
RESEARCH ARTICLE
RESEARCH ARTICLE

On minimal non-I N I-groups

Author information +
History +

Abstract

A finite group G is called an I N I-group if every proper subgroup H of G is either subnormal in G or self-normalizing. We determinate the structure of non-I N I-groups in which all proper subgroups are I N I-groups.

Keywords

Subnormal subgroup / self-normalizing subgroup / I N I-group / minimal non-I N I-group

Cite this article

Download citation ▾
Zhangjia HAN, Guiyun CHEN, Huaguo SHI. On minimal non-I N I-groups. Front Math Chin, 2013, 8(6): 1295‒1306 https://doi.org/10.1007/s11464-013-0299-5

References

[1]
Doerk K. Minimal nicht überauflösbare endliche Gruppen. Math Z, 1966, 91: 198-205
CrossRef Google scholar
[2]
Guo P, Guo X. On minimal non-MSN-groups. Front Math China, 2011, 6(5): 847-854
CrossRef Google scholar
[3]
Itô N. Über die Frattini-Gruppe einer endlichen Gruppe. Proc Japan Acad, 1955, 31: 327-328
CrossRef Google scholar
[4]
King O H. The subgroup structure of finite classical groups in terms of geometric configurations. In: Surveys in Combinatorics. Lecture Note Series 327. Cambridge: Cambridge University Press, 2005, 29-56
[5]
Kurzweil H, Stellmacher B. The Theory of Finite Groups (An Introduction). New York: Springer, 2004
[6]
Laffey T J. A lemma on finite p-group and some consequences. Proc Cambr Phil Soc, 1974, 75: 133-137
CrossRef Google scholar
[7]
Liu X, Xiao G. Finite groups with only subnormal or self-normal subgroups. J Sichuan Normal Univ, 2000, 23(5): 479-481 (in Chinese)
[8]
Miller G A, Moreno H C. Non-abelian groups in which every subgroup is abelian. Trans Amer Math Soc, 1903, 4: 398-404
CrossRef Google scholar
[9]
Sastry N. On minimal non-PN-groups. J Algebra, 1980, 65: 104-109
CrossRef Google scholar
[10]
Suzuki M. On a class of doubly transitive groups. Ann Math, 1962, 75(1): 105-145
CrossRef Google scholar
[11]
Thompson J G. Nonsolvable finite groups all of whose local subgroups are solvable I. Bull Amer Math Soc, 1968, 74: 383-437
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(129 KB)

Accesses

Citations

Detail

Sections
Recommended

/