On minimal non-
Zhangjia HAN, Guiyun CHEN, Huaguo SHI
On minimal non-
A finite group G is called an -group if every proper subgroup H of G is either subnormal in G or self-normalizing. We determinate the structure of non--groups in which all proper subgroups are -groups.
Subnormal subgroup /
self-normalizing subgroup /
[1] |
Doerk K. Minimal nicht überauflösbare endliche Gruppen. Math Z, 1966, 91: 198-205
CrossRef
Google scholar
|
[2] |
Guo P, Guo X. On minimal non-MSN-groups. Front Math China, 2011, 6(5): 847-854
CrossRef
Google scholar
|
[3] |
Itô N. Über die Frattini-Gruppe einer endlichen Gruppe. Proc Japan Acad, 1955, 31: 327-328
CrossRef
Google scholar
|
[4] |
King O H. The subgroup structure of finite classical groups in terms of geometric configurations. In: Surveys in Combinatorics. Lecture Note Series 327. Cambridge: Cambridge University Press, 2005, 29-56
|
[5] |
Kurzweil H, Stellmacher B. The Theory of Finite Groups (An Introduction). New York: Springer, 2004
|
[6] |
Laffey T J. A lemma on finite p-group and some consequences. Proc Cambr Phil Soc, 1974, 75: 133-137
CrossRef
Google scholar
|
[7] |
Liu X, Xiao G. Finite groups with only subnormal or self-normal subgroups. J Sichuan Normal Univ, 2000, 23(5): 479-481 (in Chinese)
|
[8] |
Miller G A, Moreno H C. Non-abelian groups in which every subgroup is abelian. Trans Amer Math Soc, 1903, 4: 398-404
CrossRef
Google scholar
|
[9] |
Sastry N. On minimal non-PN-groups. J Algebra, 1980, 65: 104-109
CrossRef
Google scholar
|
[10] |
Suzuki M. On a class of doubly transitive groups. Ann Math, 1962, 75(1): 105-145
CrossRef
Google scholar
|
[11] |
Thompson J G. Nonsolvable finite groups all of whose local subgroups are solvable I. Bull Amer Math Soc, 1968, 74: 383-437
CrossRef
Google scholar
|
/
〈 | 〉 |