RESEARCH ARTICLE

Numerical algorithms for Panjer recursion by applying Bernstein approximation

  • Siyuan XIE 1 ,
  • Jingping YANG , 2 ,
  • Shulin ZHOU 3
Expand
  • 1. Department of Financial Mathematics, School of Mathematical Sciences, Peking University, Beijing 100871, China
  • 2. LMEQF, Department of Financial Mathematics, School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
  • 3. LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China

Received date: 28 Apr 2012

Accepted date: 07 Jun 2012

Published date: 01 Oct 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In actuarial science, Panjer recursion (1981) is used in insurance to compute the loss distribution of the compound risk models. When the severity distribution is continuous with density function, numerical calculation for the compound distribution by applying Panjer recursion will involve an approxi- mation of the integration. In order to simplify the numerical algorithms, we apply Bernstein approximation for the continuous severity distribution function and obtain approximated recursive equations, which are used for computing the approximated values of the compound distribution. The theoretical error bound for the approximation is also obtained. Numerical results show that our algorithm provides reliable results.

Cite this article

Siyuan XIE , Jingping YANG , Shulin ZHOU . Numerical algorithms for Panjer recursion by applying Bernstein approximation[J]. Frontiers of Mathematics in China, 2013 , 8(5) : 1197 -1226 . DOI: 10.1007/s11464-012-0230-5

1
Atkinson K. Elementary Numerical Analysis. New York: Wiley, 2003

2
Bernstein S N. Démonstration du théorème de weierstrass, fondeé sur le calcul des probabilités. Commun Soc Math Kharkow, 1912, 13: 1-2

3
Brunner H, Houwen P J van der. The Numerical Solution of Volterra Equations. Amsterdam and New York: North-Holland, 1986

4
Bühlmann H.Numerical evaluation of the compound Poisson distribution: recursion or Fast Fourier Transform? Scand Actuarial J, 1984, (2): 116-126

5
Dickson D C M. A review of Panjers recursion formula and its applications. British Actuarial J, 1995, 1(1): 107-124

DOI

6
Frachot A, Georges P, T. Roncalli T. Loss distribution approach for operational risk. Working Paper, Groupe de Recherche Operationelle, France, 2001

7
Gerhold S, Warnung R. Finding efficient recursions for risk aggregation by computer algebra. J Comput Appl Math, 2009, 223(1): 499-507

DOI

8
Grubel R, Hermesmeier R. Computation of compound distributions I: Aliasing errors and exponential tilting. ASTIN Bulletin, 1999, 29(2): 197-214

DOI

9
Grubel R, Hermesmeier R. Computation of compound distributions II: Discretization errors and Richardson extrapolation. ASTIN Bulletin, 2000, 30(2): 309-331

DOI

10
Hairer E, Nørsett S P, Wanner G. Solving Ordinary Differential Equations II. Berlin: Springer, 1993

11
Hipp C. Speedy convolution algorithms and Panjer recursions for phase-type distributions. Insurance: Mathematics and Economics, 2006, 38(1): 176-188

DOI

12
den Iseger P W, Smith M A J, Dekker R. Computing compound distributions faster! Insurance: Math Econom, 1996, 20(1): 23-34

DOI

13
Lorentz G G. Bernstein Approximation. Toronto: University of Toronto Press, 1953

14
Moscadelli M.The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee. Temi di discussione del Servizio Studi, 517.2004

15
Panjer H. Recursive evaluation of a family of compound distributions. ASTIN Bulletin, 1981, 12(1): 22-26

16
Panjer H, Wang S. On the stability of recursive formulas. ASTIN Bulletin, 1993, 23(2): 227-258

DOI

17
Panjer H, Willmot G E. Insurance Loss Models. Schaumburg: Society of Actuaries, 1993

18
Peano G. Démonstration de l’intégrabilité des équations différentielles ordinaires. Math Ann, 1890, 37(2): 182-228

DOI

19
Rajagpoal L, Roy S D. Design of maximally-flat FIR filters using the Bernstein polynomial. Circuits and Systems, IEEE, 1987, 34(12): 1587-1590

DOI

20
Sancetta A, Satchell S E. The Bernstein copula and its applications to modelling and approximations of multivariate distributions. Econometric Theory, 2004, 20(3): 535-562

DOI

21
Sundt B, Jewell W S. Further results on recursive evaluation of compound distributions. ASTIN Bulletin, 1981, 12(1): 27-29

22
Yang J P, Cheng S H, Wang X Q. Bivariate recursive equation on excess-of-loss reinsurance. Acta Math Sin (Engl Ser), 2007, 23(3): 467-478

DOI

23
Yang J P, Cheng S H, Wu Q. Recursive equations for the compound distributions with severity distributions of the mixed type. Sci China, Ser A: Math, 2005, 48(5): 594-609

Options
Outlines

/