Numerical algorithms for Panjer recursion by applying Bernstein approximation

Siyuan XIE, Jingping YANG, Shulin ZHOU

PDF(240 KB)
PDF(240 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1197-1226. DOI: 10.1007/s11464-012-0230-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Numerical algorithms for Panjer recursion by applying Bernstein approximation

Author information +
History +

Abstract

In actuarial science, Panjer recursion (1981) is used in insurance to compute the loss distribution of the compound risk models. When the severity distribution is continuous with density function, numerical calculation for the compound distribution by applying Panjer recursion will involve an approxi- mation of the integration. In order to simplify the numerical algorithms, we apply Bernstein approximation for the continuous severity distribution function and obtain approximated recursive equations, which are used for computing the approximated values of the compound distribution. The theoretical error bound for the approximation is also obtained. Numerical results show that our algorithm provides reliable results.

Keywords

Compound risk model / Panjer recursion / Bernstein approximation / excess-of-loss reinsurance

Cite this article

Download citation ▾
Siyuan XIE, Jingping YANG, Shulin ZHOU. Numerical algorithms for Panjer recursion by applying Bernstein approximation. Front Math Chin, 2013, 8(5): 1197‒1226 https://doi.org/10.1007/s11464-012-0230-5

References

[1]
Atkinson K. Elementary Numerical Analysis. New York: Wiley, 2003
[2]
Bernstein S N. Démonstration du théorème de weierstrass, fondeé sur le calcul des probabilités. Commun Soc Math Kharkow, 1912, 13: 1-2
[3]
Brunner H, Houwen P J van der. The Numerical Solution of Volterra Equations. Amsterdam and New York: North-Holland, 1986
[4]
Bühlmann H.Numerical evaluation of the compound Poisson distribution: recursion or Fast Fourier Transform? Scand Actuarial J, 1984, (2): 116-126
[5]
Dickson D C M. A review of Panjers recursion formula and its applications. British Actuarial J, 1995, 1(1): 107-124
CrossRef Google scholar
[6]
Frachot A, Georges P, T. Roncalli T. Loss distribution approach for operational risk. Working Paper, Groupe de Recherche Operationelle, France, 2001
[7]
Gerhold S, Warnung R. Finding efficient recursions for risk aggregation by computer algebra. J Comput Appl Math, 2009, 223(1): 499-507
CrossRef Google scholar
[8]
Grubel R, Hermesmeier R. Computation of compound distributions I: Aliasing errors and exponential tilting. ASTIN Bulletin, 1999, 29(2): 197-214
CrossRef Google scholar
[9]
Grubel R, Hermesmeier R. Computation of compound distributions II: Discretization errors and Richardson extrapolation. ASTIN Bulletin, 2000, 30(2): 309-331
CrossRef Google scholar
[10]
Hairer E, Nørsett S P, Wanner G. Solving Ordinary Differential Equations II. Berlin: Springer, 1993
[11]
Hipp C. Speedy convolution algorithms and Panjer recursions for phase-type distributions. Insurance: Mathematics and Economics, 2006, 38(1): 176-188
CrossRef Google scholar
[12]
den Iseger P W, Smith M A J, Dekker R. Computing compound distributions faster! Insurance: Math Econom, 1996, 20(1): 23-34
CrossRef Google scholar
[13]
Lorentz G G. Bernstein Approximation. Toronto: University of Toronto Press, 1953
[14]
Moscadelli M.The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee. Temi di discussione del Servizio Studi, 517.2004
[15]
Panjer H. Recursive evaluation of a family of compound distributions. ASTIN Bulletin, 1981, 12(1): 22-26
[16]
Panjer H, Wang S. On the stability of recursive formulas. ASTIN Bulletin, 1993, 23(2): 227-258
CrossRef Google scholar
[17]
Panjer H, Willmot G E. Insurance Loss Models. Schaumburg: Society of Actuaries, 1993
[18]
Peano G. Démonstration de l’intégrabilité des équations différentielles ordinaires. Math Ann, 1890, 37(2): 182-228
CrossRef Google scholar
[19]
Rajagpoal L, Roy S D. Design of maximally-flat FIR filters using the Bernstein polynomial. Circuits and Systems, IEEE, 1987, 34(12): 1587-1590
CrossRef Google scholar
[20]
Sancetta A, Satchell S E. The Bernstein copula and its applications to modelling and approximations of multivariate distributions. Econometric Theory, 2004, 20(3): 535-562
CrossRef Google scholar
[21]
Sundt B, Jewell W S. Further results on recursive evaluation of compound distributions. ASTIN Bulletin, 1981, 12(1): 27-29
[22]
Yang J P, Cheng S H, Wang X Q. Bivariate recursive equation on excess-of-loss reinsurance. Acta Math Sin (Engl Ser), 2007, 23(3): 467-478
CrossRef Google scholar
[23]
Yang J P, Cheng S H, Wu Q. Recursive equations for the compound distributions with severity distributions of the mixed type. Sci China, Ser A: Math, 2005, 48(5): 594-609

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(240 KB)

Accesses

Citations

Detail

Sections
Recommended

/