Frontiers of Mathematics in China >
Trilinear equations, Bell polynomials, and resonant solutions
Received date: 11 Feb 2013
Accepted date: 18 Jun 2013
Published date: 01 Oct 2013
Copyright
A class of trilinear differential operators is introduced through a technique of assigning signs to derivatives and used to create trilinear differential equations. The resulting trilinear differential operators and equations are characterized by the Bell polynomials, and the superposition principle is applied to the construction of resonant solutions of exponential waves. Two illustrative examples are made by an algorithm using weights of dependent variables.
Wen-Xiu MA . Trilinear equations, Bell polynomials, and resonant solutions[J]. Frontiers of Mathematics in China, 2013 , 8(5) : 1139 -1156 . DOI: 10.1007/s11464-013-0319-5
1 |
Bell E T. Exponential polynomials. Ann Math, 1934, 35: 258-277
|
2 |
Bogdan M M, Kovalev A S. Exact multisoliton solution of one-dimensional Landau- Lifshitz equations for an anisotropic ferromagnet. JETP Lett, 1980, 31(8): 424-427
|
3 |
Broer L J F. Approximate equations for long wave equations. Appl Sci Res, 1975, 31(5): 377-395
|
4 |
Craik A D D. Prehistory of Faà di Bruno’s formula. Amer Math Monthly, 2005, 112: 217-234
|
5 |
Delzell C N. A continuous, constructive solution to Hilbert’s 17th problem. Invent Math, 1984, 76(3): 365-384
|
6 |
Gilson C, Lambert F, Nimmo J, Willox R. On the combinatorics of the Hirota D-operators. Proc R Soc Lond A, 1996, 452: 223-234
|
7 |
Grammaticos B, Ramani A, Hietarinta J. Multilinear operators: the natural extension of Hirota’s bilinear formalism. Phys Lett A, 1994, 190(1): 65-70
|
8 |
Hietarinta J. Hirota’s bilinear method and soliton solutions. Phys AUC, 2005, 15(part 1): 31-37
|
9 |
Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys Rev Lett, 1971, 27: 1192-1194
|
10 |
Hirota R. A new form of Bäcklund transformations and its relation to the inverse scattering problem. Progr Theoret Phys, 1974, 52: 1498-1512
|
11 |
Hirota R. Soliton solutions to the BKP equations—I. The Pfaffian technique. J Phys Soc Jpn, 1989, 58: 2285-2296
|
12 |
Hirota R. The Direct Method in Soliton Theory. Cambridge: Cambridge University Press, 2004
|
13 |
Hu X B, Wang H Y. Construction of dKP and BKP equations with self-consistent sources. Inverse Problems, 2006, 22: 1903-1920
|
14 |
Kaup D J. A higher-order water-wave equation and the method for solving it. Progr Theoret Phys, 1975, 54(2): 396-408
|
15 |
Lambert F, Springael J. Construction of Bäcklund transformations with binary Bell polynomials. J Phys Soc Jpn, 1997, 66: 2211-2213
|
16 |
Lambert F, Springael J, Willox R. On a direct bilinearization method: Kaup’s higher- order water wave equation as a modified nonlocal Boussinesq equation. J Phys A: Math Gen, 1994, 27: 5325-5334
|
17 |
Ma W X. Complexiton solutions to the Korteweg-de Vries equation. Phys Lett A, 2002, 301: 35-44
|
18 |
Ma W X. Variational identities and Hamiltonian structures. In: Ma W X, Hu X B, Liu Q P, eds. Nonlinear and Modern Mathematical Physics. AIP Conf Proc 1212. Melville: Amer Inst Phys, 2010, 1-27
|
19 |
Ma W X. Generalized bilinear differential equations. Stud Nonlinear Sci, 2011, 2: 140-144
|
20 |
Ma W X. Bilinear equations, Bell polynomials and the linear superposition principle. J Phys: Conf Ser, 2013, 411-012021
|
21 |
Ma W X, Abdeljabbar A, Asaad M G. Wronskian and Grammian solutions to a (3+1)- dimensional generalized KP equation. Appl Math Comput, 2011, 217: 10016-10023
|
22 |
Ma W X, Fan E G. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011, 61: 950-959
|
23 |
Ma W X, Li C X, He J S. A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal, 2009, 70: 4245-4258
|
24 |
Ma W X, You Y. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Amer Math Soc, 2005, 357: 1753-1778
|
25 |
Ma W X, Zhang Y, Tang Y N, Tu J Y. Hirota bilinear equations with linear subspaces of solutions. Appl Math Comput, 2012, 218: 7174-7183
|
26 |
Matsukidaira J, Satsuma J. Integrable four-dimensional nonlinear lattice expressed by trilinear form. J Phys Soc Jpn, 1990, 59(10): 3413-3416
|
27 |
Matsukidaira J, Satsuma J. Exactly solvable four-dimensional discrete equation expressed by trilinear form. Phys Lett A, 1991, 154: 366-372
|
28 |
Matsukidaira J, Satsuma J. The trilinear equation as a (2+2)-dimensional extension of the (1+1)-dimensional relativistic Toda lattice. Phys Lett A, 1991, 161: 267-273
|
29 |
Matsukidaira J, Satsuma J, Strampp W. Soliton equations expressed by trilinear forms and their solutions. Phys Lett A, 1990, 147: 467-471
|
30 |
Terng C-L, Uhlenbeck K. Geometry of solitons. Notices Amer Math Soc, 2000, 47(1): 17-25
|
31 |
Terng C-L, Uhlenbeck K. The n × n KdV hierarchy. J Fixed Point Theory Appl, 2011, 10(1): 37-61
|
/
〈 | 〉 |