Trilinear equations, Bell polynomials, and resonant solutions

Wen-Xiu MA

PDF(164 KB)
PDF(164 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1139-1156. DOI: 10.1007/s11464-013-0319-5
RESEARCH RTICLE
RESEARCH RTICLE

Trilinear equations, Bell polynomials, and resonant solutions

Author information +
History +

Abstract

A class of trilinear differential operators is introduced through a technique of assigning signs to derivatives and used to create trilinear differential equations. The resulting trilinear differential operators and equations are characterized by the Bell polynomials, and the superposition principle is applied to the construction of resonant solutions of exponential waves. Two illustrative examples are made by an algorithm using weights of dependent variables.

Keywords

Trilinear differential equation / Bell polynomial / superposition principle

Cite this article

Download citation ▾
Wen-Xiu MA. Trilinear equations, Bell polynomials, and resonant solutions. Front Math Chin, 2013, 8(5): 1139‒1156 https://doi.org/10.1007/s11464-013-0319-5

References

[1]
Bell E T. Exponential polynomials. Ann Math, 1934, 35: 258-277
CrossRef Google scholar
[2]
Bogdan M M, Kovalev A S. Exact multisoliton solution of one-dimensional Landau- Lifshitz equations for an anisotropic ferromagnet. JETP Lett, 1980, 31(8): 424-427
[3]
Broer L J F. Approximate equations for long wave equations. Appl Sci Res, 1975, 31(5): 377-395
CrossRef Google scholar
[4]
Craik A D D. Prehistory of Faà di Bruno’s formula. Amer Math Monthly, 2005, 112: 217-234
CrossRef Google scholar
[5]
Delzell C N. A continuous, constructive solution to Hilbert’s 17th problem. Invent Math, 1984, 76(3): 365-384
CrossRef Google scholar
[6]
Gilson C, Lambert F, Nimmo J, Willox R. On the combinatorics of the Hirota D-operators. Proc R Soc Lond A, 1996, 452: 223-234
CrossRef Google scholar
[7]
Grammaticos B, Ramani A, Hietarinta J. Multilinear operators: the natural extension of Hirota’s bilinear formalism. Phys Lett A, 1994, 190(1): 65-70
CrossRef Google scholar
[8]
Hietarinta J. Hirota’s bilinear method and soliton solutions. Phys AUC, 2005, 15(part 1): 31-37
[9]
Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys Rev Lett, 1971, 27: 1192-1194
CrossRef Google scholar
[10]
Hirota R. A new form of Bäcklund transformations and its relation to the inverse scattering problem. Progr Theoret Phys, 1974, 52: 1498-1512
CrossRef Google scholar
[11]
Hirota R. Soliton solutions to the BKP equations—I. The Pfaffian technique. J Phys Soc Jpn, 1989, 58: 2285-2296
CrossRef Google scholar
[12]
Hirota R. The Direct Method in Soliton Theory. Cambridge: Cambridge University Press, 2004
CrossRef Google scholar
[13]
Hu X B, Wang H Y. Construction of dKP and BKP equations with self-consistent sources. Inverse Problems, 2006, 22: 1903-1920
CrossRef Google scholar
[14]
Kaup D J. A higher-order water-wave equation and the method for solving it. Progr Theoret Phys, 1975, 54(2): 396-408
CrossRef Google scholar
[15]
Lambert F, Springael J. Construction of Bäcklund transformations with binary Bell polynomials. J Phys Soc Jpn, 1997, 66: 2211-2213
CrossRef Google scholar
[16]
Lambert F, Springael J, Willox R. On a direct bilinearization method: Kaup’s higher- order water wave equation as a modified nonlocal Boussinesq equation. J Phys A: Math Gen, 1994, 27: 5325-5334
CrossRef Google scholar
[17]
Ma W X. Complexiton solutions to the Korteweg-de Vries equation. Phys Lett A, 2002, 301: 35-44
CrossRef Google scholar
[18]
Ma W X. Variational identities and Hamiltonian structures. In: Ma W X, Hu X B, Liu Q P, eds. Nonlinear and Modern Mathematical Physics. AIP Conf Proc 1212. Melville: Amer Inst Phys, 2010, 1-27
[19]
Ma W X. Generalized bilinear differential equations. Stud Nonlinear Sci, 2011, 2: 140-144
[20]
Ma W X. Bilinear equations, Bell polynomials and the linear superposition principle. J Phys: Conf Ser, 2013, 411-012021
CrossRef Google scholar
[21]
Ma W X, Abdeljabbar A, Asaad M G. Wronskian and Grammian solutions to a (3+1)- dimensional generalized KP equation. Appl Math Comput, 2011, 217: 10016-10023
CrossRef Google scholar
[22]
Ma W X, Fan E G. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011, 61: 950-959
CrossRef Google scholar
[23]
Ma W X, Li C X, He J S. A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal, 2009, 70: 4245-4258
CrossRef Google scholar
[24]
Ma W X, You Y. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Amer Math Soc, 2005, 357: 1753-1778
CrossRef Google scholar
[25]
Ma W X, Zhang Y, Tang Y N, Tu J Y. Hirota bilinear equations with linear subspaces of solutions. Appl Math Comput, 2012, 218: 7174-7183
CrossRef Google scholar
[26]
Matsukidaira J, Satsuma J. Integrable four-dimensional nonlinear lattice expressed by trilinear form. J Phys Soc Jpn, 1990, 59(10): 3413-3416
CrossRef Google scholar
[27]
Matsukidaira J, Satsuma J. Exactly solvable four-dimensional discrete equation expressed by trilinear form. Phys Lett A, 1991, 154: 366-372
CrossRef Google scholar
[28]
Matsukidaira J, Satsuma J. The trilinear equation as a (2+2)-dimensional extension of the (1+1)-dimensional relativistic Toda lattice. Phys Lett A, 1991, 161: 267-273
CrossRef Google scholar
[29]
Matsukidaira J, Satsuma J, Strampp W. Soliton equations expressed by trilinear forms and their solutions. Phys Lett A, 1990, 147: 467-471
CrossRef Google scholar
[30]
Terng C-L, Uhlenbeck K. Geometry of solitons. Notices Amer Math Soc, 2000, 47(1): 17-25
[31]
Terng C-L, Uhlenbeck K. The n × n KdV hierarchy. J Fixed Point Theory Appl, 2011, 10(1): 37-61
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(164 KB)

Accesses

Citations

Detail

Sections
Recommended

/