Frontiers of Mathematics in China >
A twisted quantum toroidal algebra
Received date: 16 Jun 2012
Accepted date: 17 Apr 2013
Published date: 01 Oct 2013
Copyright
As an analog of the quantum TKK algebra, a twisted quantum toroidal algebra of type A1 is introduced. Explicit realization of the new quantum TKK algebra is constructed with the help of twisted quantum vertex operators over a Fock space.
Key words: Vertex operator; toroidal algebra; quantum algebra
Naihuan JING , Rong jia LIU . A twisted quantum toroidal algebra[J]. Frontiers of Mathematics in China, 2013 , 8(5) : 1117 -1128 . DOI: 10.1007/s11464-013-0316-8
1 |
Frenkel I B. Representation of Kac-Moody algebras and dual resonance models. In: Applications of Group Theory in Physics and Mathematical Physics (Chicago, 1982), Lect Appl Math. Providence: Amer Math Soc, 1985, 325-353
|
2 |
Frenkel I B, Jing N. Vertex representations of quantum affine algebras. Proc Natl Acad Sci USA, 1988, 85: 9373-9377
|
3 |
Frenkel I B, Jing N, Wang W. Quantum vertex representations via finite groups and the Mckay correspondence. Comm Math Phys, 2000, 211: 365-393
|
4 |
Gao Y, Jing N.
|
5 |
Gao Y, Jing N. A quantized Tits-Kantor-Koecher algebra. Algebr Represent Theory, 2010, 2: 207-217
|
6 |
Ginzburg V, Kapranov M, Vasserot E. Langlands reciprocity for algebraic surfaces. Math Res Lett, 1995, 2: 147-160
|
7 |
Jing N. Twisted vertex representations of quantum affine algebras. Invent Math, 1990, 102: 663-690
|
8 |
Jing N. Quantum Kac-Moody algebras and vertex representations. Lett Math Phys, 1998, 44: 261-271
|
9 |
Jing N. New twisted quantum current algebras. In: Wang J, Lin Z, eds. Representa-tions and Quantizations. Beijing: Higher Education Press and Springer, 2000
|
10 |
Chen F, Gao Y, Jing N, Tan S. Twisted vertex operators and unitary Lie algebras. 2011, preprint
|
11 |
Moody R V, Rao S E, Yokonuma T. Toroidal Lie algebras and vertex representations. Geom Dedicata, 1990, 35: 283-307
|
12 |
Saito Y. Quantum toroidal algebras and their vertex representations. Publ RIMS Kyoto Univ, 1998, 34: 155-177
|
13 |
Saito Y, Takemura K, Uglov D. Toroidal actions on level-1 modules of
|
14 |
Takemura K, Uglov D. Representations of the quantum toroidal algebra on highest weight modules of the quantum affine algebra of type
|
15 |
Varagnolo M, Vasserot E. Schur duality in the toroidal setting. Comm Math Phys, 1996, 182: 469-484
|
/
〈 | 〉 |