RESEARCH ARTICLE

A twisted quantum toroidal algebra

  • Naihuan JING 1,2 ,
  • Rong jia LIU , 1
Expand
  • 1. School of Sciences, South China University of Technology, Guangzhou 510640, China
  • 2. Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA

Received date: 16 Jun 2012

Accepted date: 17 Apr 2013

Published date: 01 Oct 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

As an analog of the quantum TKK algebra, a twisted quantum toroidal algebra of type A1 is introduced. Explicit realization of the new quantum TKK algebra is constructed with the help of twisted quantum vertex operators over a Fock space.

Cite this article

Naihuan JING , Rong jia LIU . A twisted quantum toroidal algebra[J]. Frontiers of Mathematics in China, 2013 , 8(5) : 1117 -1128 . DOI: 10.1007/s11464-013-0316-8

1
Frenkel I B. Representation of Kac-Moody algebras and dual resonance models. In: Applications of Group Theory in Physics and Mathematical Physics (Chicago, 1982), Lect Appl Math. Providence: Amer Math Soc, 1985, 325-353

2
Frenkel I B, Jing N. Vertex representations of quantum affine algebras. Proc Natl Acad Sci USA, 1988, 85: 9373-9377

DOI

3
Frenkel I B, Jing N, Wang W. Quantum vertex representations via finite groups and the Mckay correspondence. Comm Math Phys, 2000, 211: 365-393

DOI

4
Gao Y, Jing N. Uq(l^N) action on l^N-modules and quantum toroidal algebras. J Algebra, 2004, 273: 320-343

DOI

5
Gao Y, Jing N. A quantized Tits-Kantor-Koecher algebra. Algebr Represent Theory, 2010, 2: 207-217

6
Ginzburg V, Kapranov M, Vasserot E. Langlands reciprocity for algebraic surfaces. Math Res Lett, 1995, 2: 147-160

7
Jing N. Twisted vertex representations of quantum affine algebras. Invent Math, 1990, 102: 663-690

DOI

8
Jing N. Quantum Kac-Moody algebras and vertex representations. Lett Math Phys, 1998, 44: 261-271

DOI

9
Jing N. New twisted quantum current algebras. In: Wang J, Lin Z, eds. Representa-tions and Quantizations. Beijing: Higher Education Press and Springer, 2000

10
Chen F, Gao Y, Jing N, Tan S. Twisted vertex operators and unitary Lie algebras. 2011, preprint

11
Moody R V, Rao S E, Yokonuma T. Toroidal Lie algebras and vertex representations. Geom Dedicata, 1990, 35: 283-307

DOI

12
Saito Y. Quantum toroidal algebras and their vertex representations. Publ RIMS Kyoto Univ, 1998, 34: 155-177

DOI

13
Saito Y, Takemura K, Uglov D. Toroidal actions on level-1 modules of Uq(sl^N). Transform Groups, 1998, 3: 75-102

DOI

14
Takemura K, Uglov D. Representations of the quantum toroidal algebra on highest weight modules of the quantum affine algebra of type lN. Publ RIMS Kyoto Univ, 1999, 35: 407-450

DOI

15
Varagnolo M, Vasserot E. Schur duality in the toroidal setting. Comm Math Phys, 1996, 182: 469-484

DOI

Options
Outlines

/