A twisted quantum toroidal algebra

Naihuan JING, Rong jia LIU

PDF(125 KB)
PDF(125 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1117-1128. DOI: 10.1007/s11464-013-0316-8
RESEARCH ARTICLE
RESEARCH ARTICLE

A twisted quantum toroidal algebra

Author information +
History +

Abstract

As an analog of the quantum TKK algebra, a twisted quantum toroidal algebra of type A1 is introduced. Explicit realization of the new quantum TKK algebra is constructed with the help of twisted quantum vertex operators over a Fock space.

Keywords

Vertex operator / toroidal algebra / quantum algebra

Cite this article

Download citation ▾
Naihuan JING, Rong jia LIU. A twisted quantum toroidal algebra. Front Math Chin, 2013, 8(5): 1117‒1128 https://doi.org/10.1007/s11464-013-0316-8

References

[1]
Frenkel I B. Representation of Kac-Moody algebras and dual resonance models. In: Applications of Group Theory in Physics and Mathematical Physics (Chicago, 1982), Lect Appl Math. Providence: Amer Math Soc, 1985, 325-353
[2]
Frenkel I B, Jing N. Vertex representations of quantum affine algebras. Proc Natl Acad Sci USA, 1988, 85: 9373-9377
CrossRef Google scholar
[3]
Frenkel I B, Jing N, Wang W. Quantum vertex representations via finite groups and the Mckay correspondence. Comm Math Phys, 2000, 211: 365-393
CrossRef Google scholar
[4]
Gao Y, Jing N. Uq(l^N) action on l^N-modules and quantum toroidal algebras. J Algebra, 2004, 273: 320-343
CrossRef Google scholar
[5]
Gao Y, Jing N. A quantized Tits-Kantor-Koecher algebra. Algebr Represent Theory, 2010, 2: 207-217
[6]
Ginzburg V, Kapranov M, Vasserot E. Langlands reciprocity for algebraic surfaces. Math Res Lett, 1995, 2: 147-160
[7]
Jing N. Twisted vertex representations of quantum affine algebras. Invent Math, 1990, 102: 663-690
CrossRef Google scholar
[8]
Jing N. Quantum Kac-Moody algebras and vertex representations. Lett Math Phys, 1998, 44: 261-271
CrossRef Google scholar
[9]
Jing N. New twisted quantum current algebras. In: Wang J, Lin Z, eds. Representa-tions and Quantizations. Beijing: Higher Education Press and Springer, 2000
[10]
Chen F, Gao Y, Jing N, Tan S. Twisted vertex operators and unitary Lie algebras. 2011, preprint
[11]
Moody R V, Rao S E, Yokonuma T. Toroidal Lie algebras and vertex representations. Geom Dedicata, 1990, 35: 283-307
CrossRef Google scholar
[12]
Saito Y. Quantum toroidal algebras and their vertex representations. Publ RIMS Kyoto Univ, 1998, 34: 155-177
CrossRef Google scholar
[13]
Saito Y, Takemura K, Uglov D. Toroidal actions on level-1 modules of Uq(sl^N). Transform Groups, 1998, 3: 75-102
CrossRef Google scholar
[14]
Takemura K, Uglov D. Representations of the quantum toroidal algebra on highest weight modules of the quantum affine algebra of type lN. Publ RIMS Kyoto Univ, 1999, 35: 407-450
CrossRef Google scholar
[15]
Varagnolo M, Vasserot E. Schur duality in the toroidal setting. Comm Math Phys, 1996, 182: 469-484
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(125 KB)

Accesses

Citations

Detail

Sections
Recommended

/