A twisted quantum toroidal algebra

Naihuan Jing , Rongjia Liu

Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1117 -1128.

PDF (125KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1117 -1128. DOI: 10.1007/s11464-013-0316-8
Research Article
RESEARCH ARTICLE

A twisted quantum toroidal algebra

Author information +
History +
PDF (125KB)

Abstract

As an analog of the quantum TKK algebra, a twisted quantum toroidal algebra of type A1 is introduced. Explicit realization of the new quantum TKK algebra is constructed with the help of twisted quantum vertex operators over a Fock space.

Keywords

Vertex operator / toroidal algebra / quantum algebra

Cite this article

Download citation ▾
Naihuan Jing, Rongjia Liu. A twisted quantum toroidal algebra. Front. Math. China, 2013, 8(5): 1117-1128 DOI:10.1007/s11464-013-0316-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Frenkel I B. Representation of Kac-Moody algebras and dual resonance models. Applications of Group Theory in Physics and Mathematical Physics (Chicago, 1982), 1985, Providence: Amer Math Soc 325 353

[2]

Frenkel I B, Jing N. Vertex representations of quantum affine algebras. Proc Natl Acad Sci USA, 1988, 85: 9373-9377

[3]

Frenkel I B, Jing N, Wang W. Quantum vertex representations via finite groups and the Mckay correspondence. Comm Math Phys, 2000, 211: 365-393

[4]

Gao Y, Jing N. Uq(ĝlN) action on ĝlN-modules and quantum toroidal algebras. J Algebra, 2004, 273: 320-343

[5]

Gao Y, Jing N. A quantized Tits-Kantor-Koecher algebra. Algebr Represent Theory, 2010, 2: 207-217

[6]

Ginzburg V, Kapranov M, Vasserot E. Langlands reciprocity for algebraic surfaces. Math Res Lett, 1995, 2: 147-160

[7]

Jing N. Twisted vertex representations of quantum affine algebras. Invent Math, 1990, 102: 663-690

[8]

Jing N. Quantum Kac-Moody algebras and vertex representations. Lett Math Phys, 1998, 44: 261-271

[9]

Jing N. Wang J, Lin Z. New twisted quantum current algebras. Representations and Quantizations, 2000, Beijing: Higher Education Press and Springer

[10]

Chen F, Gao Y, Jing N, Tan S. Twisted vertex operators and unitary Lie algebras, 2011

[11]

Moody R V, Rao S E, Yokonuma T. Toroidal Lie algebras and vertex representations. Geom Dedicata, 1990, 35: 283-307

[12]

Saito Y. Quantum toroidal algebras and their vertex representations. Publ RIMS Kyoto Univ, 1998, 34: 155-177

[13]

Saito Y, Takemura K, Uglov D. Toroidal actions on level-1 modules of [inline-graphic not available: see fulltext]. Transform Groups, 1998, 3: 75-102

[14]

Takemura K, Uglov D. Representations of the quantum toroidal algebra on highest weight modules of the quantum affine algebra of type glN. Publ RIMS Kyoto Univ, 1999, 35: 407-450

[15]

Varagnolo M, Vasserot E. Schur duality in the toroidal setting. Comm Math Phys, 1996, 182: 469-484

AI Summary AI Mindmap
PDF (125KB)

976

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/