RESEARCH ARTICLE

A semidiscrete Gardner equation

  • Haiqiong ZHAO 1 ,
  • Zuonong ZHU , 2
Expand
  • 1. Business Information Management School, Shanghai University of International Business and Economics, Shanghai 201620, China
  • 2. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 03 Jan 2013

Accepted date: 04 Apr 2013

Published date: 01 Oct 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We construct the Darboux transformations, exact solutions, and infinite number of conservation laws for a semidiscrete Gardner equation. A special class of solutions of the semidiscrete equation, called table-top solitons, are given. The dynamical properties of these solutions are also discussed.

Cite this article

Haiqiong ZHAO , Zuonong ZHU . A semidiscrete Gardner equation[J]. Frontiers of Mathematics in China, 2013 , 8(5) : 1099 -1115 . DOI: 10.1007/s11464-013-0309-7

1
Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud Appl Math, 1974, 53: 249-315

2
Ablowitz M J, Ladik J. Nonlinear differential-difference equations. J Math Phys, 1975, 16: 598-603

DOI

3
Ablowitz M J, Ladik J. Nonlinear differential-difference equations and Fourier analysis. J Math Phys, 1976, 17: 1011-1018

DOI

4
Ablowitz M J, Segur H. Solitons and the Inverse Scattering Transform. Philadelphia: SIAM, 1981

DOI

5
Chen Y Z, Liu P L F. On interfacial waves over random topography. Wave Motion, 1996, 24: 169-184

DOI

6
Geng X G. Darboux transformation of the discrete Ablowitz-Ladik eigenvalue problem. Acta Math Sci, 1989, 9: 21-26

7
Grimshaw R, Pelinovsky D, Pelinovsky E, Slunyaev A. Generation of large-amplitude solitons in the extended Korteweg-de Vries equation. Chaos, 2002, 12: 1070-1076

DOI

8
Grimshaw R, Slunyaev A, Pelinovsky E. Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity. Chaos, 2010, 20: 013102

DOI

9
Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys Rev Lett, 1971, 27: 1192-1194

DOI

10
Hirota R. Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons. J Phys Soc Jpn, 1972, 33: 1456-1458

DOI

11
Hirota R. Exact solution of the sine-Gordon equation for multiple collisions of solitons. J Phys Soc Jpn, 1972, 33: 1459-1463

DOI

12
Holloway P E, Pelinovsky P E, Talipova T, Barnes B. A nonlinear model of internal tide transformation on the Australian North West Shelf. J Phys Oceanogr, 1997, 27: 871-896

DOI

13
Kakutani T, Yamasaki N. Solitary waves on a two-layer fluid. J Phys Soc Jpn, 1978, 45: 674-679

DOI

14
Kodama Y J, Wadati M. Wave propagation in nonlinear lattice III. J Phys Soc Jpn, 1976, 41: 1499-1504

DOI

15
Malomed B A, Stepanyants Y A. The inverse problem for the Gross-Pitaevskii equation. Chaos, 2010, 20: 013130

DOI

16
Miura R M, Gardner C S, Kruskal M D. Korteweg-de Vries equation and generalizations II. Existence of conservation laws and constants of motion. J Math Phys, 1968, 9: 1204-1209

DOI

17
Slyunyaev A V. Dynamics of localized waves with large amplitude in a weakly dispersive medium with a quadratic and positive cubic nonlinearity. JETP, 2001, 92: 529-534

DOI

18
Slyunyaev A V, Pelinovski E N. Dynamics of large-amplitude solitons. JETP, 1999, 89: 173-181

DOI

19
Taha T R. A differential-difference equation for a KdV-MKdV equation. Math Comput Simulation, 1993, 35: 509-512

DOI

20
Vekslerchik V E. Implementation of the Bäcklund transformations for the Ablowitz-Ladik hierarchy. J Phys A: Math Gen, 2006, 39: 6933-6953

DOI

21
Wadati M. Wave propagation in nonlinear lattice I. J Phys Soc Jpn, 1975, 38: 673-680

DOI

22
Wadati M. Wave propagation in nonlinear lattice II. J Phys Soc Jpn, 1975, 38: 681-686

DOI

23
Wadati M, Watanabe M. Conservation laws of a Volterra system and nonlinear selfdual network equation. Prog Theor Phys, 1977, 57: 808-811

DOI

24
Watanabe S. Ion acoustic soliton in plasma with negative ion. J Phys Soc Jpn, 1984, 53: 950-956

DOI

Options
Outlines

/