A semidiscrete Gardner equation

Haiqiong ZHAO, Zuonong ZHU

PDF(207 KB)
PDF(207 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1099-1115. DOI: 10.1007/s11464-013-0309-7
RESEARCH ARTICLE
RESEARCH ARTICLE

A semidiscrete Gardner equation

Author information +
History +

Abstract

We construct the Darboux transformations, exact solutions, and infinite number of conservation laws for a semidiscrete Gardner equation. A special class of solutions of the semidiscrete equation, called table-top solitons, are given. The dynamical properties of these solutions are also discussed.

Keywords

Semidiscrete Gardner equation / Darboux transformation / exact solution

Cite this article

Download citation ▾
Haiqiong ZHAO, Zuonong ZHU. A semidiscrete Gardner equation. Front Math Chin, 2013, 8(5): 1099‒1115 https://doi.org/10.1007/s11464-013-0309-7

References

[1]
Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud Appl Math, 1974, 53: 249-315
[2]
Ablowitz M J, Ladik J. Nonlinear differential-difference equations. J Math Phys, 1975, 16: 598-603
CrossRef Google scholar
[3]
Ablowitz M J, Ladik J. Nonlinear differential-difference equations and Fourier analysis. J Math Phys, 1976, 17: 1011-1018
CrossRef Google scholar
[4]
Ablowitz M J, Segur H. Solitons and the Inverse Scattering Transform. Philadelphia: SIAM, 1981
CrossRef Google scholar
[5]
Chen Y Z, Liu P L F. On interfacial waves over random topography. Wave Motion, 1996, 24: 169-184
CrossRef Google scholar
[6]
Geng X G. Darboux transformation of the discrete Ablowitz-Ladik eigenvalue problem. Acta Math Sci, 1989, 9: 21-26
[7]
Grimshaw R, Pelinovsky D, Pelinovsky E, Slunyaev A. Generation of large-amplitude solitons in the extended Korteweg-de Vries equation. Chaos, 2002, 12: 1070-1076
CrossRef Google scholar
[8]
Grimshaw R, Slunyaev A, Pelinovsky E. Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity. Chaos, 2010, 20: 013102
CrossRef Google scholar
[9]
Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys Rev Lett, 1971, 27: 1192-1194
CrossRef Google scholar
[10]
Hirota R. Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons. J Phys Soc Jpn, 1972, 33: 1456-1458
CrossRef Google scholar
[11]
Hirota R. Exact solution of the sine-Gordon equation for multiple collisions of solitons. J Phys Soc Jpn, 1972, 33: 1459-1463
CrossRef Google scholar
[12]
Holloway P E, Pelinovsky P E, Talipova T, Barnes B. A nonlinear model of internal tide transformation on the Australian North West Shelf. J Phys Oceanogr, 1997, 27: 871-896
CrossRef Google scholar
[13]
Kakutani T, Yamasaki N. Solitary waves on a two-layer fluid. J Phys Soc Jpn, 1978, 45: 674-679
CrossRef Google scholar
[14]
Kodama Y J, Wadati M. Wave propagation in nonlinear lattice III. J Phys Soc Jpn, 1976, 41: 1499-1504
CrossRef Google scholar
[15]
Malomed B A, Stepanyants Y A. The inverse problem for the Gross-Pitaevskii equation. Chaos, 2010, 20: 013130
CrossRef Google scholar
[16]
Miura R M, Gardner C S, Kruskal M D. Korteweg-de Vries equation and generalizations II. Existence of conservation laws and constants of motion. J Math Phys, 1968, 9: 1204-1209
CrossRef Google scholar
[17]
Slyunyaev A V. Dynamics of localized waves with large amplitude in a weakly dispersive medium with a quadratic and positive cubic nonlinearity. JETP, 2001, 92: 529-534
CrossRef Google scholar
[18]
Slyunyaev A V, Pelinovski E N. Dynamics of large-amplitude solitons. JETP, 1999, 89: 173-181
CrossRef Google scholar
[19]
Taha T R. A differential-difference equation for a KdV-MKdV equation. Math Comput Simulation, 1993, 35: 509-512
CrossRef Google scholar
[20]
Vekslerchik V E. Implementation of the Bäcklund transformations for the Ablowitz-Ladik hierarchy. J Phys A: Math Gen, 2006, 39: 6933-6953
CrossRef Google scholar
[21]
Wadati M. Wave propagation in nonlinear lattice I. J Phys Soc Jpn, 1975, 38: 673-680
CrossRef Google scholar
[22]
Wadati M. Wave propagation in nonlinear lattice II. J Phys Soc Jpn, 1975, 38: 681-686
CrossRef Google scholar
[23]
Wadati M, Watanabe M. Conservation laws of a Volterra system and nonlinear selfdual network equation. Prog Theor Phys, 1977, 57: 808-811
CrossRef Google scholar
[24]
Watanabe S. Ion acoustic soliton in plasma with negative ion. J Phys Soc Jpn, 1984, 53: 950-956
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(207 KB)

Accesses

Citations

Detail

Sections
Recommended

/