RESEARCH ARTICLE

Conservation laws of some lattice equations

  • Junwei CHENG ,
  • Dajun ZHANG
Expand
  • Department of Mathematics, Shanghai University, Shanghai 200444, China

Received date: 11 Dec 2012

Accepted date: 03 Apr 2013

Published date: 01 Oct 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We derive infinitely many conservation laws for some multidimensionally consistent lattice equations from their Lax pairs. These lattice equations are the Nijhoff-Quispel-Capel equation, lattice Boussinesq equation, lattice nonlinear Schr¨odinger equation, modified lattice Boussinesq equation, Hietarinta’s Boussinesq-type equations, Schwarzian lattice Boussinesq equation, and Toda-modified lattice Boussinesq equation.

Cite this article

Junwei CHENG , Dajun ZHANG . Conservation laws of some lattice equations[J]. Frontiers of Mathematics in China, 0 , 8(5) : 1001 -1016 . DOI: 10.1007/s11464-013-0304-z

1
Adler V E, Bobenko A I, Suris Yu B. Classification of integrable equations on quadgraphs. The consistency approach. Comm Math Phys, 2003, 233: 513-543

2
Atkinson J, Hietarinta J, Nijhoff F W. Seed and soliton solutions for Adler’s lattice equation. J Phys A, 2007, 40: F1-F8

DOI

3
Atkinson J, Hietarinta J, Nijhoff F W. Soliton solutions for Q3. J Phys A, 2008, 41: 142001

DOI

4
Bobenko A I, Suris Yu B. Integrable systems on quad-graphs. Int Math Res Not, 2002, 11: 573-611

DOI

5
Bridgman T, Hereman W, QuispelG R W, van der Kamp P H. Symbolic computation of Lax pairs of partial difference equations using consistency around the cube. Found Comput Math, doi: 10.1007/s10208-012-9133-9

DOI

6
Hietarinta J. Searching for CAC-maps. J Nonlinear Math Phys, 2005, 12(Suppl.2): 223-230

DOI

7
Hietarinta J. Boussinesq-like multi-component lattice equations and multi-dimensional consistency. J Phys A, 2011, 44: 165204

DOI

8
Hietarinta J, Zhang D J. Soliton solutions for ABS lattice equations: II. Casoratians and bilinearization. J Phys A, 2009, 42: 404006

DOI

9
Hietarinta J, Zhang D J. Multisoliton solutions to the lattice Boussinesq equation. J Math Phys, 2010, 51: 033505

DOI

10
Hietarinta J, Zhang D J. Soliton taxonomy for a modification of the lattice Boussinesq equation. SIGMA, 2011, 7: 061

11
Hydon P E. Conservation laws of partial difference equations with two independent variables. J Phys A, 2001, 34: 10347-10355

DOI

12
Mikhailov A V. From automorphic Lie algebras to discrete integrable systems. In: Programme on Discrete Integrable Systems. Isaac Newton Institute for Mathematical Sciences, Cambridge. 2009, http://www.newton.ac.uk/programmes/DIS/seminars /061714001.html

13
Mikhailov A V, Wang J P, Xenitidis P. Recursion operators, conservation laws and integrability conditions for difference equations. Theoret Math Phys, 2011, 167: 421-443

DOI

14
Nijhoff F W. On some “Schwarzian” equations and their discrete analogues. In: Fokas A S, Gel’fand I M, eds. Algebraic Aspects of Integrable Systems, In Memory of Irene Dorfman. New York: Birkhäuser, 1996, 237-260

15
Nijhoff F W, Atkinson J, Hietarinta J. Soliton solutions for ABS lattice equations: I. Cauchy matrix approach. J Phys A, 2009, 42: 404005

DOI

16
Nijhoff F W, Papageorgiou V G, Capel H W, Quispel G R W. The lattice Gel’fand- Dikii hierarchy. Inverse Problems, 1992, 8: 597-621

DOI

17
Nijhoff F W, Quispel G R W, Capel H W. Direct linearization of nonlinear differencedifference equations. Phys Lett A, 1983, 97: 125-128

DOI

18
Nijhoff F W, Walker A J. The discrete and continuous Painlev′e VI hierarchy and the Garnier systems. Glasg Math J, 2001, 43A: 109-123

DOI

19
Rasin A G. Infinitely many symmetries and conservation laws for quad-graph equations via the Gardner method. J Phys A, 2010, 43: 235201

DOI

20
Rasin O G, Hydon P E. Conservation laws for NQC-type difference equations. J Phys A, 2006, 39: 14055-14066

DOI

21
Rasin A G, Schiff J. Infinitely many conservation laws for the discrete KdV equation. J Phys A: Math Theor, 2009, 42: 175205

DOI

22
Tongas A, Nijhoff F W. The Boussinesq integrable system: compatible lattice and continuum structures. Glasg Math J, 2005, 47: 205-219

DOI

23
Wadati M, Sanuki H, Konno K. Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Progr Theoret Phys, 1975, 53: 419-436

DOI

24
Walker A. Similarity reductions and integrable lattice equations. DissertationTip, Univ of Leeds, UK, 2001

25
Xenitidis P. Symmetries and conservation laws of the ABS equations and corresponding differential-difference equations of Volterra type. J Phys A, 2011, 44: 435201

DOI

26
Xenitidis P, Nijhoff F W. Symmetries and conservation laws of lattice Boussinesq equations. Phys Lett A, 2012, 376: 2394-2401

DOI

27
Zhang D J. Conservation laws of the two-dimensional Toda lattice hierarchy. J Phys Soc Jpn, 2002, 71: 2583-2586

DOI

28
Zhang D J, Chen D Y. The conservation laws of some discrete soliton systems. Chaos Solitons Fractals, 2002, 14: 573-579

DOI

29
Zhang D J, Cheng J W, Sun Y Y. Deriving conservation laws for ABS lattice equations from Lax pairs. arXiv: 1210.3454v1

30
Zhu Z N, Wu X N, Xue W M, Zhu Z M. Infinitely many conservation laws for the Blaszak-Marciniak four-field integrable lattice hierarchy. Phys Lett A, 2002, 296: 280-288

DOI

Options
Outlines

/