Conservation laws of some lattice equations

Junwei CHENG, Dajun ZHANG

PDF(125 KB)
PDF(125 KB)
Front. Math. China ›› DOI: 10.1007/s11464-013-0304-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Conservation laws of some lattice equations

Author information +
History +

Abstract

We derive infinitely many conservation laws for some multidimensionally consistent lattice equations from their Lax pairs. These lattice equations are the Nijhoff-Quispel-Capel equation, lattice Boussinesq equation, lattice nonlinear Schr¨odinger equation, modified lattice Boussinesq equation, Hietarinta’s Boussinesq-type equations, Schwarzian lattice Boussinesq equation, and Toda-modified lattice Boussinesq equation.

Keywords

Conservation law / Lax pair / multi-dimensionally consistent lattice equation / discrete integrable system

Cite this article

Download citation ▾
Junwei CHENG, Dajun ZHANG. Conservation laws of some lattice equations. Front Math Chin, https://doi.org/10.1007/s11464-013-0304-z

References

[1]
Adler V E, Bobenko A I, Suris Yu B. Classification of integrable equations on quadgraphs. The consistency approach. Comm Math Phys, 2003, 233: 513-543
[2]
Atkinson J, Hietarinta J, Nijhoff F W. Seed and soliton solutions for Adler’s lattice equation. J Phys A, 2007, 40: F1-F8
CrossRef Google scholar
[3]
Atkinson J, Hietarinta J, Nijhoff F W. Soliton solutions for Q3. J Phys A, 2008, 41: 142001
CrossRef Google scholar
[4]
Bobenko A I, Suris Yu B. Integrable systems on quad-graphs. Int Math Res Not, 2002, 11: 573-611
CrossRef Google scholar
[5]
Bridgman T, Hereman W, QuispelG R W, van der Kamp P H. Symbolic computation of Lax pairs of partial difference equations using consistency around the cube. Found Comput Math, doi: 10.1007/s10208-012-9133-9
CrossRef Google scholar
[6]
Hietarinta J. Searching for CAC-maps. J Nonlinear Math Phys, 2005, 12(Suppl.2): 223-230
CrossRef Google scholar
[7]
Hietarinta J. Boussinesq-like multi-component lattice equations and multi-dimensional consistency. J Phys A, 2011, 44: 165204
CrossRef Google scholar
[8]
Hietarinta J, Zhang D J. Soliton solutions for ABS lattice equations: II. Casoratians and bilinearization. J Phys A, 2009, 42: 404006
CrossRef Google scholar
[9]
Hietarinta J, Zhang D J. Multisoliton solutions to the lattice Boussinesq equation. J Math Phys, 2010, 51: 033505
CrossRef Google scholar
[10]
Hietarinta J, Zhang D J. Soliton taxonomy for a modification of the lattice Boussinesq equation. SIGMA, 2011, 7: 061
[11]
Hydon P E. Conservation laws of partial difference equations with two independent variables. J Phys A, 2001, 34: 10347-10355
CrossRef Google scholar
[12]
Mikhailov A V. From automorphic Lie algebras to discrete integrable systems. In: Programme on Discrete Integrable Systems. Isaac Newton Institute for Mathematical Sciences, Cambridge. 2009, http://www.newton.ac.uk/programmes/DIS/seminars /061714001.html
[13]
Mikhailov A V, Wang J P, Xenitidis P. Recursion operators, conservation laws and integrability conditions for difference equations. Theoret Math Phys, 2011, 167: 421-443
CrossRef Google scholar
[14]
Nijhoff F W. On some “Schwarzian” equations and their discrete analogues. In: Fokas A S, Gel’fand I M, eds. Algebraic Aspects of Integrable Systems, In Memory of Irene Dorfman. New York: Birkhäuser, 1996, 237-260
[15]
Nijhoff F W, Atkinson J, Hietarinta J. Soliton solutions for ABS lattice equations: I. Cauchy matrix approach. J Phys A, 2009, 42: 404005
CrossRef Google scholar
[16]
Nijhoff F W, Papageorgiou V G, Capel H W, Quispel G R W. The lattice Gel’fand- Dikii hierarchy. Inverse Problems, 1992, 8: 597-621
CrossRef Google scholar
[17]
Nijhoff F W, Quispel G R W, Capel H W. Direct linearization of nonlinear differencedifference equations. Phys Lett A, 1983, 97: 125-128
CrossRef Google scholar
[18]
Nijhoff F W, Walker A J. The discrete and continuous Painlev′e VI hierarchy and the Garnier systems. Glasg Math J, 2001, 43A: 109-123
CrossRef Google scholar
[19]
Rasin A G. Infinitely many symmetries and conservation laws for quad-graph equations via the Gardner method. J Phys A, 2010, 43: 235201
CrossRef Google scholar
[20]
Rasin O G, Hydon P E. Conservation laws for NQC-type difference equations. J Phys A, 2006, 39: 14055-14066
CrossRef Google scholar
[21]
Rasin A G, Schiff J. Infinitely many conservation laws for the discrete KdV equation. J Phys A: Math Theor, 2009, 42: 175205
CrossRef Google scholar
[22]
Tongas A, Nijhoff F W. The Boussinesq integrable system: compatible lattice and continuum structures. Glasg Math J, 2005, 47: 205-219
CrossRef Google scholar
[23]
Wadati M, Sanuki H, Konno K. Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Progr Theoret Phys, 1975, 53: 419-436
CrossRef Google scholar
[24]
Walker A. Similarity reductions and integrable lattice equations. DissertationTip, Univ of Leeds, UK, 2001
[25]
Xenitidis P. Symmetries and conservation laws of the ABS equations and corresponding differential-difference equations of Volterra type. J Phys A, 2011, 44: 435201
CrossRef Google scholar
[26]
Xenitidis P, Nijhoff F W. Symmetries and conservation laws of lattice Boussinesq equations. Phys Lett A, 2012, 376: 2394-2401
CrossRef Google scholar
[27]
Zhang D J. Conservation laws of the two-dimensional Toda lattice hierarchy. J Phys Soc Jpn, 2002, 71: 2583-2586
CrossRef Google scholar
[28]
Zhang D J, Chen D Y. The conservation laws of some discrete soliton systems. Chaos Solitons Fractals, 2002, 14: 573-579
CrossRef Google scholar
[29]
Zhang D J, Cheng J W, Sun Y Y. Deriving conservation laws for ABS lattice equations from Lax pairs. arXiv: 1210.3454v1
[30]
Zhu Z N, Wu X N, Xue W M, Zhu Z M. Infinitely many conservation laws for the Blaszak-Marciniak four-field integrable lattice hierarchy. Phys Lett A, 2002, 296: 280-288
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(125 KB)

Accesses

Citations

Detail

Sections
Recommended

/