PDF
(125KB)
Abstract
We derive infinitely many conservation laws for some multidimensionally consistent lattice equations from their Lax pairs. These lattice equations are the Nijhoff-Quispel-Capel equation, lattice Boussinesq equation, lattice nonlinear Schrödinger equation, modified lattice Boussinesq equation, Hietarinta’s Boussinesq-type equations, Schwarzian lattice Boussinesq equation, and Toda-modified lattice Boussinesq equation.
Keywords
Conservation law
/
Lax pair
/
multi-dimensionally consistent lattice equation
/
discrete integrable system
Cite this article
Download citation ▾
Junwei Cheng, Dajun Zhang.
Conservation laws of some lattice equations.
Front. Math. China, 2013, 8(5): 1001-1016 DOI:10.1007/s11464-013-0304-z
| [1] |
Adler V E, Bobenko A I, Suris Y B. Classification of integrable equations on quadgraphs. The consistency approach. Comm Math Phys, 2003, 233: 513-543
|
| [2] |
Atkinson J, Hietarinta J, Nijhoff F W. Seed and soliton solutions for Adler’s lattice equation. J Phys A, 2007, 40: F1-F8
|
| [3] |
Atkinson J, Hietarinta J, Nijhoff F W. Soliton solutions for Q3. J Phys A, 2008, 41: 142001
|
| [4] |
Bobenko A I, Suris Y B. Integrable systems on quad-graphs. Int Math Res Not, 2002, 11: 573-611
|
| [5] |
Bridgman T, Hereman W, Quispel G R W, van der Kamp P H. Symbolic computation of Lax pairs of partial difference equations using consistency around the cube. Found Comput Math, doi: 10.1007/s10208-012-9133-9
|
| [6] |
Hietarinta J. Searching for CAC-maps. J Nonlinear Math Phys, 2005, 12(Suppl.2): 223-230
|
| [7] |
Hietarinta J. Boussinesq-like multi-component lattice equations and multi-dimensional consistency. J Phys A, 2011, 44: 165204
|
| [8] |
Hietarinta J, Zhang D J. Soliton solutions for ABS lattice equations: II. Casoratians and bilinearization. J Phys A, 2009, 42: 404006
|
| [9] |
Hietarinta J, Zhang D J. Multisoliton solutions to the lattice Boussinesq equation. J Math Phys, 2010, 51: 033505
|
| [10] |
Hietarinta J, Zhang D J. Soliton taxonomy for a modification of the lattice Boussinesq equation. SIGMA, 2011, 7: 061
|
| [11] |
Hydon P E. Conservation laws of partial difference equations with two independent variables. J Phys A, 2001, 34: 10347-10355
|
| [12] |
Mikhailov A V. From automorphic Lie algebras to discrete integrable systems. Programme on Discrete Integrable Systems, 2009, Cambridge: Isaac Newton Institute for Mathematical Sciences
|
| [13] |
Mikhailov A V, Wang J P, Xenitidis P. Recursion operators, conservation laws and integrability conditions for difference equations. Theoret Math Phys, 2011, 167: 421-443
|
| [14] |
Nijhoff F W. Fokas A S, Gel’fand I M. On some “Schwarzian” equations and their discrete analogues. Algebraic Aspects of Integrable Systems, In Memory of Irene Dorfman, 1996, New York: Birkhäuser 237 260
|
| [15] |
Nijhoff F W, Atkinson J, Hietarinta J. Soliton solutions for ABS lattice equations: I Cauchy matrix approach. J Phys A, 2009, 42: 404005
|
| [16] |
Nijhoff F W, Papageorgiou V G, Capel H W, Quispel G R W. The lattice Gel’fand-Dikii hierarchy. Inverse Problems, 1992, 8: 597-621
|
| [17] |
Nijhoff F W, Quispel G R W, Capel H W. Direct linearization of nonlinear differencedifference equations. Phys Lett A, 1983, 97: 125-128
|
| [18] |
Nijhoff F W, Walker A J. The discrete and continuous Painlevé VI hierarchy and the Garnier systems. Glasg Math J, 2001, 43A: 109-123
|
| [19] |
Rasin A G. Infinitely many symmetries and conservation laws for quad-graph equations via the Gardner method. J Phys A, 2010, 43: 235201
|
| [20] |
Rasin O G, Hydon P E. Conservation laws for NQC-type difference equations. J Phys A, 2006, 39: 14055-14066
|
| [21] |
Rasin A G, Schiff J. Infinitely many conservation laws for the discrete KdV equation. J Phys A: Math Theor, 2009, 42: 175205
|
| [22] |
Tongas A, Nijhoff F W. The Boussinesq integrable system: compatible lattice and continuum structures. Glasg Math J, 2005, 47: 205-219
|
| [23] |
Wadati M, Sanuki H, Konno K. Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Progr Theoret Phys, 1975, 53: 419-436
|
| [24] |
Walker A. Similarity reductions and integrable lattice equations, 2001, UK: Univ of Leeds
|
| [25] |
Xenitidis P. Symmetries and conservation laws of the ABS equations and corresponding differential-difference equations of Volterra type. J Phys A, 2011, 44: 435201
|
| [26] |
Xenitidis P, Nijhoff F W. Symmetries and conservation laws of lattice Boussinesq equations. Phys Lett A, 2012, 376: 2394-2401
|
| [27] |
Zhang D J. Conservation laws of the two-dimensional Toda lattice hierarchy. J Phys Soc Jpn, 2002, 71: 2583-2586
|
| [28] |
Zhang D J, Chen D Y. The conservation laws of some discrete soliton systems. Chaos Solitons Fractals, 2002, 14: 573-579
|
| [29] |
Zhang D J, Cheng J W, Sun Y Y. Deriving conservation laws for ABS lattice equations from Lax pairs. arXiv: 1210.3454v1
|
| [30] |
Zhu Z N, Wu X N, Xue W M, Zhu Z M. Infinitely many conservation laws for the Blaszak-Marciniak four-field integrable lattice hierarchy. Phys Lett A, 2002, 296: 280-288
|