RESEARCH ARTICLE

Hereditarily covering properties of inverse sequence limits

  • Bin ZHAO ,
  • Aili SONG ,
  • Jing WEI
Expand
  • Department of Mathematics, Kashi Teachers College, Kashi 844007, China

Received date: 29 Oct 2012

Accepted date: 13 Dec 2012

Published date: 01 Aug 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Let {Xi, πki,ω} be an inverse sequence and X = lim{Xi,πki,ω}. If each Xi is hereditarily (resp. metaLindelöf, σ-metaLindelöf, σ-orthocompact, weakly suborthocompact, δθ-refinable, weakly θ-refinable, weakly δθ-refinable), then so is X.

Cite this article

Bin ZHAO , Aili SONG , Jing WEI . Hereditarily covering properties of inverse sequence limits[J]. Frontiers of Mathematics in China, 2013 , 8(4) : 987 -997 . DOI: 10.1007/s11464-013-0277-y

1
Aoki Y. Orthocompactness of inverse limits and products. Tsukuba J Math, 1980, 4: 241-255

2
Chiba K. Normality of inverse limits. Math Japonica, 1990, 35(5): 959-970

3
Chiba K. Covering properties of inverse limits. Questions Answers Gen Topology, 2002, 20: 101-114

4
Chiba K, Yajima Y. Covering properties of inverse limits II. Topology Proc, 2003, 27(1): 79-100

5
Engelking R. General Topology (Revised and Completed Ed). Berlin: Heldermann Verlag, 1989

6
Kemoto N, Smith K D. Hereditary countable metacompactness in finite and infinite product spaces of ordinals. Topology Appl, 1997, 77: 57-63

DOI

7
Kemoto N, Yajima Y. Orthocompactness in products. Tsukuba J Math, 1992, 16(2): 591-596

8
Yasui Y. Generalized paracompactness. In: Morita K, Nagata J, eds. Topics in General Topology. Amsterdam: North-Holland, 1989

DOI

9
Zhao B. Inverse limits of spaces with the weak B-property. Math J Okayama Univ, 2008, 48: 127-133

10
Zhu P Y. Hereditarily screenableness and its Tychonoff products. Topology Appl, 1998, 83: 231-238

DOI

11
Zhu P Y. Hereditarily σ-metacompact space and its product properties. Acta Math Sinica (Chin Ser), 1998, 41(3): 531-538 (in Chinese)

Options
Outlines

/