Hereditarily covering properties of inverse sequence limits
Bin Zhao , Aili Song , Jing Wei
Front. Math. China ›› 2013, Vol. 8 ›› Issue (4) : 987 -997.
Hereditarily covering properties of inverse sequence limits
Let {Xi, πki, ω} be an inverse sequence and $X = \mathop {\lim }\limits_ \leftarrow \left\{ {X_i ,\pi _k^i ,\omega } \right\}$. If each Xi is hereditarily (resp. metaLindelöf, σ-metaLindelöf, σ-orthocompact, weakly suborthocompact, δθ-refinable, weakly θ-refinable, weakly δθ-refinable), then so is X.
Inverse sequence limit / hereditarily metaLindelöfness / hereditarily weakly suborthocompactness / hereditarily δθ-refinability / hereditarily weakly θ-refinability / countable product
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
/
| 〈 |
|
〉 |