Hereditarily covering properties of inverse sequence limits

Bin Zhao , Aili Song , Jing Wei

Front. Math. China ›› 2013, Vol. 8 ›› Issue (4) : 987 -997.

PDF (123KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (4) : 987 -997. DOI: 10.1007/s11464-013-0277-y
Research Article
RESEARCH ARTICLE

Hereditarily covering properties of inverse sequence limits

Author information +
History +
PDF (123KB)

Abstract

Let {Xi, πki, ω} be an inverse sequence and $X = \mathop {\lim }\limits_ \leftarrow \left\{ {X_i ,\pi _k^i ,\omega } \right\}$. If each Xi is hereditarily (resp. metaLindelöf, σ-metaLindelöf, σ-orthocompact, weakly suborthocompact, δθ-refinable, weakly θ-refinable, weakly δθ-refinable), then so is X.

Keywords

Inverse sequence limit / hereditarily metaLindelöfness / hereditarily weakly suborthocompactness / hereditarily δθ-refinability / hereditarily weakly θ-refinability / countable product

Cite this article

Download citation ▾
Bin Zhao, Aili Song, Jing Wei. Hereditarily covering properties of inverse sequence limits. Front. Math. China, 2013, 8(4): 987-997 DOI:10.1007/s11464-013-0277-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aoki Y. Orthocompactness of inverse limits and products. Tsukuba J Math, 1980, 4: 241-255

[2]

Chiba K. Normality of inverse limits. Math Japonica, 1990, 35(5): 959-970

[3]

Chiba K. Covering properties of inverse limits. Questions Answers Gen Topology, 2002, 20: 101-114

[4]

Chiba K, Yajima Y. Covering properties of inverse limits II. Topology Proc, 2003, 27(1): 79-100

[5]

Engelking R. General Topology (Revised and Completed Ed), 1989, Berlin: Heldermann Verlag

[6]

Kemoto N, Smith K D. Hereditary countable metacompactness in finite and infinite product spaces of ordinals. Topology Appl, 1997, 77: 57-63

[7]

Kemoto N, Yajima Y. Orthocompactness in products. Tsukuba J Math, 1992, 16(2): 591-596

[8]

Yasui Y. Morita K, Nagata J. Generalized paracompactness. Topics in General Topology, 1989, Amsterdam: North-Holland

[9]

Zhao B. Inverse limits of spaces with the weak [inline-graphic not available: see fulltext]-property. Math J Okayama Univ, 2008, 48: 127-133

[10]

Zhu P Y. Hereditarily screenableness and its Tychonoff products. Topology Appl, 1998, 83: 231-238

[11]

Zhu P Y. Hereditarily σ-metacompact space and its product properties. Acta Math Sinica (Chin Ser), 1998, 41(3): 531-538

AI Summary AI Mindmap
PDF (123KB)

806

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/