RESEARCH ARTICLE

Derivation algebra and automorphism group of generalized topological N = 2 superconformal algebra

  • Hengyun YANG , 1 ,
  • Yafeng YU 2 ,
  • Tingfu YAO 2
Expand
  • 1. Department of Mathematics, Shanghai Maritime University, Shanghai 201306, China
  • 2. College of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, China

Received date: 06 Jan 2011

Accepted date: 08 Apr 2013

Published date: 01 Aug 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We determine the derivation algebra and the automorphism group of the generalized topological N = 2 superconformal algebra.

Cite this article

Hengyun YANG , Yafeng YU , Tingfu YAO . Derivation algebra and automorphism group of generalized topological N = 2 superconformal algebra[J]. Frontiers of Mathematics in China, 2013 , 8(4) : 973 -986 . DOI: 10.1007/s11464-013-0306-x

1
Ademollo M, Brink L, D’Adda A, D’Auria R, Napolitano E, Sciuto S, Del Giudice E, Di Vecchia P, Ferrara S, Gliozzi F, Musto R, Pettorino R. Supersymmetric strings and colour confinement. Phys Lett B, 1976, 62: 105-110

DOI

2
Dijkgraaf R, Verlinde E, Verlinde H. Topological strings in d<1. Nucl Phys B, 1991, 352: 59-86

DOI

3
Fu J, Gao Y. Derivation algebra and automorphism group of generalized Ramond N = 2 superconformal algebra. Front Math China, 2009, 4: 637-650

DOI

4
Gato-Rivera B. Construction formulae for singular vectors of the topological and of the Ramond N = 2 superconformal algebras. Int J Mod Phys A, 2002, 17: 4515-4541

DOI

5
Iohara K, Koga Y. Representation theory of Neveu-Schwarz and Ramond algebras I: Verma modules. Adv Math, 2003, 178: 1-65

DOI

6
Iohara K, Koga Y. Representation theory of N = 2 super Virasoro algebra: twisted sector. J Funct Anal, 2004, 214: 450-518

DOI

7
Kac V G. Lie superalgebras. Adv Math, 1977, 26: 8-96

DOI

8
Li J, Su Y. Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49: 053512

DOI

9
Li J, Su Y, Zhu L. 2-cocycles of original deformative Schrödinger-Virasoro algebras. Sci China Ser A, 2008, 51: 1989-1999

DOI

10
Li J, Su Y, Zhu L. Classification of indecomposable modules of the intermediate series over the twisted N = 2 superconformal algebra. J Math Phys, 2010, 51: 083513

DOI

11
Lu R, Zhao K. Classification of irreducible weight modules over higher rank Virasoro algebras. Adv Math, 2006, 206: 630-656

DOI

12
Patera J, Zassenhaus H. The higher rank Virasoro algebras. Comm Math Phys, 1991, 136: 1-14

DOI

13
Su Y. Harish-Chandra modules of intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras. J Math Phys, 1994, 35: 2013-2023

DOI

14
Su Y. Simple modules over the higher rank super-Virasoro algebras. Lett Math Phys, 2000, 53: 263-272

DOI

15
Su Y. Simple modules over the high rank Virasoro algebras. Comm Algebra, 2001, 29: 2067-2080

DOI

16
Su Y. Classification of Harish-Chandra modules over the higher rank Virasoro algebras. Comm Math Phys, 2003, 240: 539-551

17
Su Y. Structure of Lie superalgebras of Block type related to locally finite derivations. Comm Algebra, 2003, 31: 1725-1751

DOI

18
Su Y. Derivations of generalized Weyl algebras. Sci China Ser A, 2003, 46: 346-354

19
Su Y, Zhao K. Generalized Virasoro and super-Virasoro algebras and modules of the intermediate series. J Algebra, 2002, 252: 1-19

DOI

20
Su Y, Zhao K. Structure of algebras ofWeyl type. Comm Algebra, 2004, 32: 1051-1059

DOI

21
Su Y, Zhao K, Zhu L. Simple color algebras of Weyl type. Israel J Math, 2003, 137: 109-123

DOI

22
Su Y, Zhao K, Zhu L. Classification of derivation-simple color algebras related to locally finite derivations. J Math Phys, 2004, 45: 525-536

DOI

23
Yang H, Su Y. Lie super-bialgebra structures on the Ramond N = 2 super-Virasoro algebra. Chaos Solitons Fractals, 2009, 40: 661-671

DOI

24
Yang H, Su Y. Lie super-bialgebra structures on generalized super-Virasoro algebras. Acta Math Sci Ser B Engl Ed, 2010, 30: 225-239

Options
Outlines

/