Derivation algebra and automorphism group of generalized topological N = 2 superconformal algebra

Hengyun YANG, Yafeng YU, Tingfu YAO

PDF(126 KB)
PDF(126 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (4) : 973-986. DOI: 10.1007/s11464-013-0306-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Derivation algebra and automorphism group of generalized topological N = 2 superconformal algebra

Author information +
History +

Abstract

We determine the derivation algebra and the automorphism group of the generalized topological N = 2 superconformal algebra.

Keywords

generalized topological N = 2 superconformal algebra / derivation algebra / automorphism group

Cite this article

Download citation ▾
Hengyun YANG, Yafeng YU, Tingfu YAO. Derivation algebra and automorphism group of generalized topological N = 2 superconformal algebra. Front Math Chin, 2013, 8(4): 973‒986 https://doi.org/10.1007/s11464-013-0306-x

References

[1]
Ademollo M, Brink L, D’Adda A, D’Auria R, Napolitano E, Sciuto S, Del Giudice E, Di Vecchia P, Ferrara S, Gliozzi F, Musto R, Pettorino R. Supersymmetric strings and colour confinement. Phys Lett B, 1976, 62: 105-110
CrossRef Google scholar
[2]
Dijkgraaf R, Verlinde E, Verlinde H. Topological strings in d<1. Nucl Phys B, 1991, 352: 59-86
CrossRef Google scholar
[3]
Fu J, Gao Y. Derivation algebra and automorphism group of generalized Ramond N = 2 superconformal algebra. Front Math China, 2009, 4: 637-650
CrossRef Google scholar
[4]
Gato-Rivera B. Construction formulae for singular vectors of the topological and of the Ramond N = 2 superconformal algebras. Int J Mod Phys A, 2002, 17: 4515-4541
CrossRef Google scholar
[5]
Iohara K, Koga Y. Representation theory of Neveu-Schwarz and Ramond algebras I: Verma modules. Adv Math, 2003, 178: 1-65
CrossRef Google scholar
[6]
Iohara K, Koga Y. Representation theory of N = 2 super Virasoro algebra: twisted sector. J Funct Anal, 2004, 214: 450-518
CrossRef Google scholar
[7]
Kac V G. Lie superalgebras. Adv Math, 1977, 26: 8-96
CrossRef Google scholar
[8]
Li J, Su Y. Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49: 053512
CrossRef Google scholar
[9]
Li J, Su Y, Zhu L. 2-cocycles of original deformative Schrödinger-Virasoro algebras. Sci China Ser A, 2008, 51: 1989-1999
CrossRef Google scholar
[10]
Li J, Su Y, Zhu L. Classification of indecomposable modules of the intermediate series over the twisted N = 2 superconformal algebra. J Math Phys, 2010, 51: 083513
CrossRef Google scholar
[11]
Lu R, Zhao K. Classification of irreducible weight modules over higher rank Virasoro algebras. Adv Math, 2006, 206: 630-656
CrossRef Google scholar
[12]
Patera J, Zassenhaus H. The higher rank Virasoro algebras. Comm Math Phys, 1991, 136: 1-14
CrossRef Google scholar
[13]
Su Y. Harish-Chandra modules of intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras. J Math Phys, 1994, 35: 2013-2023
CrossRef Google scholar
[14]
Su Y. Simple modules over the higher rank super-Virasoro algebras. Lett Math Phys, 2000, 53: 263-272
CrossRef Google scholar
[15]
Su Y. Simple modules over the high rank Virasoro algebras. Comm Algebra, 2001, 29: 2067-2080
CrossRef Google scholar
[16]
Su Y. Classification of Harish-Chandra modules over the higher rank Virasoro algebras. Comm Math Phys, 2003, 240: 539-551
[17]
Su Y. Structure of Lie superalgebras of Block type related to locally finite derivations. Comm Algebra, 2003, 31: 1725-1751
CrossRef Google scholar
[18]
Su Y. Derivations of generalized Weyl algebras. Sci China Ser A, 2003, 46: 346-354
[19]
Su Y, Zhao K. Generalized Virasoro and super-Virasoro algebras and modules of the intermediate series. J Algebra, 2002, 252: 1-19
CrossRef Google scholar
[20]
Su Y, Zhao K. Structure of algebras ofWeyl type. Comm Algebra, 2004, 32: 1051-1059
CrossRef Google scholar
[21]
Su Y, Zhao K, Zhu L. Simple color algebras of Weyl type. Israel J Math, 2003, 137: 109-123
CrossRef Google scholar
[22]
Su Y, Zhao K, Zhu L. Classification of derivation-simple color algebras related to locally finite derivations. J Math Phys, 2004, 45: 525-536
CrossRef Google scholar
[23]
Yang H, Su Y. Lie super-bialgebra structures on the Ramond N = 2 super-Virasoro algebra. Chaos Solitons Fractals, 2009, 40: 661-671
CrossRef Google scholar
[24]
Yang H, Su Y. Lie super-bialgebra structures on generalized super-Virasoro algebras. Acta Math Sci Ser B Engl Ed, 2010, 30: 225-239

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(126 KB)

Accesses

Citations

Detail

Sections
Recommended

/