Derivation algebra and automorphism group of generalized topological
Hengyun YANG, Yafeng YU, Tingfu YAO
Derivation algebra and automorphism group of generalized topological
We determine the derivation algebra and the automorphism group of the generalized topological N = 2 superconformal algebra.
generalized topological N = 2 superconformal algebra / derivation algebra / automorphism group
[1] |
Ademollo M, Brink L, D’Adda A, D’Auria R, Napolitano E, Sciuto S, Del Giudice E, Di Vecchia P, Ferrara S, Gliozzi F, Musto R, Pettorino R. Supersymmetric strings and colour confinement. Phys Lett B, 1976, 62: 105-110
CrossRef
Google scholar
|
[2] |
Dijkgraaf R, Verlinde E, Verlinde H. Topological strings in d<1. Nucl Phys B, 1991, 352: 59-86
CrossRef
Google scholar
|
[3] |
Fu J, Gao Y. Derivation algebra and automorphism group of generalized Ramond N = 2 superconformal algebra. Front Math China, 2009, 4: 637-650
CrossRef
Google scholar
|
[4] |
Gato-Rivera B. Construction formulae for singular vectors of the topological and of the Ramond N = 2 superconformal algebras. Int J Mod Phys A, 2002, 17: 4515-4541
CrossRef
Google scholar
|
[5] |
Iohara K, Koga Y. Representation theory of Neveu-Schwarz and Ramond algebras I: Verma modules. Adv Math, 2003, 178: 1-65
CrossRef
Google scholar
|
[6] |
Iohara K, Koga Y. Representation theory of N = 2 super Virasoro algebra: twisted sector. J Funct Anal, 2004, 214: 450-518
CrossRef
Google scholar
|
[7] |
Kac V G. Lie superalgebras. Adv Math, 1977, 26: 8-96
CrossRef
Google scholar
|
[8] |
Li J, Su Y. Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49: 053512
CrossRef
Google scholar
|
[9] |
Li J, Su Y, Zhu L. 2-cocycles of original deformative Schrödinger-Virasoro algebras. Sci China Ser A, 2008, 51: 1989-1999
CrossRef
Google scholar
|
[10] |
Li J, Su Y, Zhu L. Classification of indecomposable modules of the intermediate series over the twisted N = 2 superconformal algebra. J Math Phys, 2010, 51: 083513
CrossRef
Google scholar
|
[11] |
Lu R, Zhao K. Classification of irreducible weight modules over higher rank Virasoro algebras. Adv Math, 2006, 206: 630-656
CrossRef
Google scholar
|
[12] |
Patera J, Zassenhaus H. The higher rank Virasoro algebras. Comm Math Phys, 1991, 136: 1-14
CrossRef
Google scholar
|
[13] |
Su Y. Harish-Chandra modules of intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras. J Math Phys, 1994, 35: 2013-2023
CrossRef
Google scholar
|
[14] |
Su Y. Simple modules over the higher rank super-Virasoro algebras. Lett Math Phys, 2000, 53: 263-272
CrossRef
Google scholar
|
[15] |
Su Y. Simple modules over the high rank Virasoro algebras. Comm Algebra, 2001, 29: 2067-2080
CrossRef
Google scholar
|
[16] |
Su Y. Classification of Harish-Chandra modules over the higher rank Virasoro algebras. Comm Math Phys, 2003, 240: 539-551
|
[17] |
Su Y. Structure of Lie superalgebras of Block type related to locally finite derivations. Comm Algebra, 2003, 31: 1725-1751
CrossRef
Google scholar
|
[18] |
Su Y. Derivations of generalized Weyl algebras. Sci China Ser A, 2003, 46: 346-354
|
[19] |
Su Y, Zhao K. Generalized Virasoro and super-Virasoro algebras and modules of the intermediate series. J Algebra, 2002, 252: 1-19
CrossRef
Google scholar
|
[20] |
Su Y, Zhao K. Structure of algebras ofWeyl type. Comm Algebra, 2004, 32: 1051-1059
CrossRef
Google scholar
|
[21] |
Su Y, Zhao K, Zhu L. Simple color algebras of Weyl type. Israel J Math, 2003, 137: 109-123
CrossRef
Google scholar
|
[22] |
Su Y, Zhao K, Zhu L. Classification of derivation-simple color algebras related to locally finite derivations. J Math Phys, 2004, 45: 525-536
CrossRef
Google scholar
|
[23] |
Yang H, Su Y. Lie super-bialgebra structures on the Ramond N = 2 super-Virasoro algebra. Chaos Solitons Fractals, 2009, 40: 661-671
CrossRef
Google scholar
|
[24] |
Yang H, Su Y. Lie super-bialgebra structures on generalized super-Virasoro algebras. Acta Math Sci Ser B Engl Ed, 2010, 30: 225-239
|
/
〈 | 〉 |