RESEARCH ARTICLE

Variable selection for single-index varying-coefficient model

  • Sanying FENG ,
  • Liugen XUE
Expand
  • College of Applied Sciences, Beijing University of Technology, Beijing 100124, China

Received date: 29 Jun 2012

Accepted date: 17 Jan 2013

Published date: 01 Jun 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We consider the problem of variable selection for single-index varying-coefficient model, and present a regularized variable selection procedure by combining basis function approximations with SCAD penalty. The proposed procedure simultaneously selects significant covariates with functional coefficients and local significant variables with parametric coefficients. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the estimators are established. The proposed method can naturally be applied to deal with pure single-index model and varying-coefficient model. Finite sample performances of the proposed method are illustrated by a simulation study and the real data analysis.

Cite this article

Sanying FENG , Liugen XUE . Variable selection for single-index varying-coefficient model[J]. Frontiers of Mathematics in China, 2013 , 8(3) : 541 -565 . DOI: 10.1007/s11464-013-0284-z

1
Bunea F. Consistent covariate selection and post model selection inference in semiparametric regression. Ann Statist, 2004, 32: 898-927

DOI

2
Cai Z W, Fan J Q, Li R Z. Efficient estimation and inferences for varying coefficient models. J Amer Statist Assoc, 2000, 95: 888-902

DOI

3
Fan J Q, Li R Z. Variable selection via nonconcave penalized likelihood and its oracle properties. J Amer Statist Assoc, 2001, 96: 1348-1360

DOI

4
Fan J Q, Li R Z. New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. J Amer Statist Assoc, 2004, 99: 710-723

DOI

5
Fan J Q, Lv J C. A selective overview of variable selection in high dimensional feature space. Statist Sinica, 2010, 20: 101-148

6
Fan J Q, Yao Q W, Cai Z W. Adaptive varying-coefficient linear models. J R Stat Soc Ser B Stat Methodol, 2003, 65: 57-80

DOI

7
Fan J Q, Zhang W Y. Statistical estimation in varying-coefficient models. Ann Statist, 1999, 27: 1491-1518

DOI

8
Frank I E, Friedman J H. A statistical view of some chemometrics regression tools. Technometrics, 1993, 35: 109-148

DOI

9
Härdle W, Hall P, Ichimura H. Optimal smoothing in single-index models. Ann Statist, 1993, 21: 157-178

DOI

10
Hastie T J, Tibshirani R. Varying-coefficient models. J R Stat Soc Ser B Stat Methodol, 1993, 55: 757-796

11
He X M, Zhu Z Y, Fung W K. Estimation in a semiparametric model for longitudinal data with unspecified dependence structure. Biometrika, 2002, 89: 579-590

DOI

12
Hoerl A, Kennard R. Ridge regression. In: Encyclopedia of Statistical Sciences, Vol 8. New York: Wiley, 1988, 129-136

13
Huang J Z, Shen H. Functional coefficient regression models for non-linear time series: a polynomial spline approach. Scand J Stat, 2004, 31: 515-534

DOI

14
Li G R, Peng H, Zhang J, Zhu L X. Robust rank correlation based screening. Ann Statist, 2012, 40: 1846-1877

DOI

15
Li G R, Peng H, Zhu L X. Nonconcave penalized M-estimation with a diverging number of parameters. Statist Sinica, 2011, 21: 391-419

16
Li R Z, Liang H. Variable selection in semiparametric regression modeling. Ann Statist, 2008, 36: 261-286

DOI

17
Lu Z D, Tjϕstheim D, Yao Q W. Adaptive varying-coefficient linear models for stochastic processes: Asymptotic theory. Statist Sinica, 2007, 17: 177-197

18
Potter S M. A nonlinear approach to US GNP. J Appl Econometrics, 1995, 10: 109-125

DOI

19
Schumaker L L. Spline Functions. New York: Wiley Press, 1981

20
Stone C J. Optimal global rates of convergence for nonparametric regression. Ann Statist, 1982, 10: 1348-1360

DOI

21
Stute W, Zhu L X. Nonparametric checks for single-index models. Ann Statist, 2005, 33: 1048-1083

DOI

22
Tiao G C, Tsay R S. Some advances in non-linear and adaptive modelling in timeseries. J Forecast, 1994, 13: 109-131

DOI

23
Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B Stat Methodol, 1996, 58: 267-288

24
Wang L, Li H, Huang J Z. Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. J Amer Statist Assoc, 2008, 103: 1556-1569

DOI

25
Wu T Z, Lin H Q, Yu Y. Single-index coefficient models for nonlinear time series. J Nonparametr Stat, 2011, 23: 37-58

DOI

26
Xia Y C, Li W K. On single-index coefficient regression models. J Amer Statist Assoc, 1999, 94: 1275-1285

DOI

27
Xue L G, Pang Z. Statistical inference for a single-index varying-coefficient model. Stat Comput, online,

DOI

28
Xue L G, Wang Q H. Empirical likelihood for single-index varying-coefficient models. Bernoulli, 2012, 18(3): 836-856

DOI

29
Xue L G, Zhu L X. Empirical likelihood for single-index model. J Multivariate Anal, 2006, 97: 1295-1312

DOI

30
Xue L G, Zhu L X. Empirical Likelihood for a varying coefficient model with longitudinal data. J Amer Statist Assoc, 2007, 102: 642-654

DOI

31
Yu Y, Ruppert D. Penalized spline estimation for partially linear single-index models. J Amer Statist Assoc, 2002, 97: 1042-1054

DOI

32
Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B Stat Methodol, 2006, 68: 49-68

DOI

33
Zhao P X, Xue L G. Variable selection for semiparametric varying coefficient partially linear model. Statist Probab Lett, 2009, 79: 2148-2157

DOI

34
Zhao P X, Xue L G. Variable selection for semiparametric varying coefficient partially linear errors-in-variables models. J Multivariate Anal, 2010, 101: 1872-1883

DOI

35
Zou H. The adaptive Lasso and its oracle properties. J Amer Statist Assoc, 2006, 101: 1418-1429

DOI

Options
Outlines

/