Variable selection for single-index varying-coefficient model

Sanying FENG, Liugen XUE

PDF(231 KB)
PDF(231 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (3) : 541-565. DOI: 10.1007/s11464-013-0284-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Variable selection for single-index varying-coefficient model

Author information +
History +

Abstract

We consider the problem of variable selection for single-index varying-coefficient model, and present a regularized variable selection procedure by combining basis function approximations with SCAD penalty. The proposed procedure simultaneously selects significant covariates with functional coefficients and local significant variables with parametric coefficients. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the estimators are established. The proposed method can naturally be applied to deal with pure single-index model and varying-coefficient model. Finite sample performances of the proposed method are illustrated by a simulation study and the real data analysis.

Keywords

Single-index varying-coefficient model / variable selection / SCAD / oracle property

Cite this article

Download citation ▾
Sanying FENG, Liugen XUE. Variable selection for single-index varying-coefficient model. Front Math Chin, 2013, 8(3): 541‒565 https://doi.org/10.1007/s11464-013-0284-z

References

[1]
Bunea F. Consistent covariate selection and post model selection inference in semiparametric regression. Ann Statist, 2004, 32: 898-927
CrossRef Google scholar
[2]
Cai Z W, Fan J Q, Li R Z. Efficient estimation and inferences for varying coefficient models. J Amer Statist Assoc, 2000, 95: 888-902
CrossRef Google scholar
[3]
Fan J Q, Li R Z. Variable selection via nonconcave penalized likelihood and its oracle properties. J Amer Statist Assoc, 2001, 96: 1348-1360
CrossRef Google scholar
[4]
Fan J Q, Li R Z. New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. J Amer Statist Assoc, 2004, 99: 710-723
CrossRef Google scholar
[5]
Fan J Q, Lv J C. A selective overview of variable selection in high dimensional feature space. Statist Sinica, 2010, 20: 101-148
[6]
Fan J Q, Yao Q W, Cai Z W. Adaptive varying-coefficient linear models. J R Stat Soc Ser B Stat Methodol, 2003, 65: 57-80
CrossRef Google scholar
[7]
Fan J Q, Zhang W Y. Statistical estimation in varying-coefficient models. Ann Statist, 1999, 27: 1491-1518
CrossRef Google scholar
[8]
Frank I E, Friedman J H. A statistical view of some chemometrics regression tools. Technometrics, 1993, 35: 109-148
CrossRef Google scholar
[9]
Härdle W, Hall P, Ichimura H. Optimal smoothing in single-index models. Ann Statist, 1993, 21: 157-178
CrossRef Google scholar
[10]
Hastie T J, Tibshirani R. Varying-coefficient models. J R Stat Soc Ser B Stat Methodol, 1993, 55: 757-796
[11]
He X M, Zhu Z Y, Fung W K. Estimation in a semiparametric model for longitudinal data with unspecified dependence structure. Biometrika, 2002, 89: 579-590
CrossRef Google scholar
[12]
Hoerl A, Kennard R. Ridge regression. In: Encyclopedia of Statistical Sciences, Vol 8. New York: Wiley, 1988, 129-136
[13]
Huang J Z, Shen H. Functional coefficient regression models for non-linear time series: a polynomial spline approach. Scand J Stat, 2004, 31: 515-534
CrossRef Google scholar
[14]
Li G R, Peng H, Zhang J, Zhu L X. Robust rank correlation based screening. Ann Statist, 2012, 40: 1846-1877
CrossRef Google scholar
[15]
Li G R, Peng H, Zhu L X. Nonconcave penalized M-estimation with a diverging number of parameters. Statist Sinica, 2011, 21: 391-419
[16]
Li R Z, Liang H. Variable selection in semiparametric regression modeling. Ann Statist, 2008, 36: 261-286
CrossRef Google scholar
[17]
Lu Z D, Tjϕstheim D, Yao Q W. Adaptive varying-coefficient linear models for stochastic processes: Asymptotic theory. Statist Sinica, 2007, 17: 177-197
[18]
Potter S M. A nonlinear approach to US GNP. J Appl Econometrics, 1995, 10: 109-125
CrossRef Google scholar
[19]
Schumaker L L. Spline Functions. New York: Wiley Press, 1981
[20]
Stone C J. Optimal global rates of convergence for nonparametric regression. Ann Statist, 1982, 10: 1348-1360
CrossRef Google scholar
[21]
Stute W, Zhu L X. Nonparametric checks for single-index models. Ann Statist, 2005, 33: 1048-1083
CrossRef Google scholar
[22]
Tiao G C, Tsay R S. Some advances in non-linear and adaptive modelling in timeseries. J Forecast, 1994, 13: 109-131
CrossRef Google scholar
[23]
Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B Stat Methodol, 1996, 58: 267-288
[24]
Wang L, Li H, Huang J Z. Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. J Amer Statist Assoc, 2008, 103: 1556-1569
CrossRef Google scholar
[25]
Wu T Z, Lin H Q, Yu Y. Single-index coefficient models for nonlinear time series. J Nonparametr Stat, 2011, 23: 37-58
CrossRef Google scholar
[26]
Xia Y C, Li W K. On single-index coefficient regression models. J Amer Statist Assoc, 1999, 94: 1275-1285
CrossRef Google scholar
[27]
Xue L G, Pang Z. Statistical inference for a single-index varying-coefficient model. Stat Comput, online,
CrossRef Google scholar
[28]
Xue L G, Wang Q H. Empirical likelihood for single-index varying-coefficient models. Bernoulli, 2012, 18(3): 836-856
CrossRef Google scholar
[29]
Xue L G, Zhu L X. Empirical likelihood for single-index model. J Multivariate Anal, 2006, 97: 1295-1312
CrossRef Google scholar
[30]
Xue L G, Zhu L X. Empirical Likelihood for a varying coefficient model with longitudinal data. J Amer Statist Assoc, 2007, 102: 642-654
CrossRef Google scholar
[31]
Yu Y, Ruppert D. Penalized spline estimation for partially linear single-index models. J Amer Statist Assoc, 2002, 97: 1042-1054
CrossRef Google scholar
[32]
Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B Stat Methodol, 2006, 68: 49-68
CrossRef Google scholar
[33]
Zhao P X, Xue L G. Variable selection for semiparametric varying coefficient partially linear model. Statist Probab Lett, 2009, 79: 2148-2157
CrossRef Google scholar
[34]
Zhao P X, Xue L G. Variable selection for semiparametric varying coefficient partially linear errors-in-variables models. J Multivariate Anal, 2010, 101: 1872-1883
CrossRef Google scholar
[35]
Zou H. The adaptive Lasso and its oracle properties. J Amer Statist Assoc, 2006, 101: 1418-1429
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(231 KB)

Accesses

Citations

Detail

Sections
Recommended

/