RESEARCH ARTICLE

Limit theorems for the position of a tagged particle in the stirring-exclusion process

  • Peng CHEN ,
  • Fuxi ZHANG
Expand
  • School of Mathematical Sciences, Peking University, Beijing 100871, China

Received date: 15 Oct 2012

Accepted date: 16 Jan 2013

Published date: 01 Jun 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Stirring-exclusion processes are exclusion processes with particles being stirred. We investigate a tagged particle among a Bernoulli product environment measure on the lattice d.We show the strong law of large numbers and the central limit theorem for the tagged particle. The proof of the central limit theorem is based on the method of martingale decomposition with a sector condition.

Cite this article

Peng CHEN , Fuxi ZHANG . Limit theorems for the position of a tagged particle in the stirring-exclusion process[J]. Frontiers of Mathematics in China, 2013 , 8(3) : 479 -496 . DOI: 10.1007/s11464-013-0283-0

1
Arratia R. The motion of a tagged particle in the simple symmetric exclusion system on ℤ1. Ann Probab, 1983, 11: 362-373

DOI

2
Da Prato G, Zabczyk J. Ergodicity for Infinite Dimensional Systems. London Math Soc Lecture Note Ser, 229. Cambridge: Cambridge University Press, 1996

DOI

3
De Masi A, Ferrari P A. Flux fluctuations in the one dimensional nearest neighbors symmetric simple exclusion process. J Stat Phys, 2002, 107(3-4): 77-683

DOI

4
De Masi A, Ferrari P A, Goldstein S, Wick W D. An invariance principle for reversible Markov processes. Applications to random motions in random environments. J Stat Phys, 1989, 55(3-4): 787-855

DOI

5
Feller W. An Introduction to Probability Theory and Its Applications. Vol II. 2nd ed. New York: John Wiley & Sons, 1971

6
Ferrari P A. Limit theorems for tagged particles. Disordered systems and statistical physics: rigorous results. Markov Process Related Fields,1996, 2(1): 17-40

7
Ferrari P A, Fontes L R G. Poissonian approximation for the tagged particle in asymmetric simple exclusion. J Appl Probab, 1996, 33(2): 411-419

DOI

8
Kallenberg O. Foundations of Modern Probability. 2nd ed. Probability and Its Applications. New York: Springer-Verlag, 2002

9
Kipnis C. Central limit theorems for infinite series of queues and applications to simple exclusion. Ann Probab, 1986, 14(2): 397-408

DOI

10
Kipnis C, Landim C. Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften, 320. Berlin: Springer-Verlag, 1999

DOI

11
Kipnis C, Varadhan S R S. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm Math Phys, 1986, 104(1): 1-19

DOI

12
Komorowski T, Landim C, Olla S. Fluctuations in Markov Processes. Time Symmetry and Martingale Approximation. Grundlehren der Mathematischen Wissenschaften, 345. Heidelberg: Springer, 2012

13
Landim C. Central limit theorem for Markov processes. From classical to modern probability. Progr Probab, 2003, 54: 145-205

14
Landim C, Olla S, Varadhan S R S. Asymptotic behavior of a tagged particle in simple exclusion processes. Bol Soc Brasil Mat (NS), 2000, 31(3): 241-275

DOI

15
Lebowitz J L, Spohn H. Microscopic basis for Fick’s law for self-diffusion. J Stat Phys, 1982, 28(3): 539-556

DOI

16
Liggett T M. Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften, 276. New York: Springer-Verlag, 1985

DOI

17
Liggett T M. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren der Mathematischen Wissenschaften, 324. Berlin: Springer-Verlag, 1999

DOI

18
Olla S. Notes on the central limit theorems for tagged particles and diffusions in random fields. Given at Etàts de la recherche: Milieux Alèatoires. Panor Synthèses, 2001, 12: 75-100

19
Peligrad M, Sethuraman S. On fractional Brownian motion limits in one dimensional nearest-neighbor symmetric simple exclusion. ALEA, 2008, 4: 245-255

20
Saada E. A limit theorem for the position of a tagged particle in a simple exclusion process. Ann Probab, 1987, 15(1): 375-381

DOI

21
Sethuraman S. On extremal measures for conservative particle systems. Ann Inst Henri Poincaré Probab Stat, 2001, 37(2): 139-154

DOI

22
Sethuraman S. Diffusive variance for a tagged particle in d≤2 asymmetric simple exclusion. ALEA, 2006, 1: 305-332

23
Sethuraman S, Varadhan S R S, Yau H T. Diffusive limit of a tagged particle in asymmetric simple exclusion processes. Comm Pure Appl Math, 2000, 53(8): 972-1006

DOI

24
Spitzer F. Interaction of Markov Processes. Adv Math, 1971, 5: 256-290

25
Spohn H. Large Scale Dynamics of Interacting Particles. Berlin: Springer-Verlag, 1991

DOI

26
Varadhan S R S. Self-diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion. Ann Inst Henri Poincaré Probab Stat, 1995, 31(1): 273-285

Options
Outlines

/