Limit theorems for the position of a tagged particle in the stirring-exclusion process

Peng Chen , Fuxi Zhang

Front. Math. China ›› 2013, Vol. 8 ›› Issue (3) : 479 -496.

PDF (167KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (3) : 479 -496. DOI: 10.1007/s11464-013-0283-0
Research Article
RESEARCH ARTICLE

Limit theorems for the position of a tagged particle in the stirring-exclusion process

Author information +
History +
PDF (167KB)

Abstract

Stirring-exclusion processes are exclusion processes with particles being stirred. We investigate a tagged particle among a Bernoulli product environment measure on the lattice ℤ d.We show the strong law of large numbers and the central limit theorem for the tagged particle. The proof of the central limit theorem is based on the method of martingale decomposition with a sector condition.

Keywords

Tagged particle / stirring-exclusion / central limit theorem / sector condition

Cite this article

Download citation ▾
Peng Chen, Fuxi Zhang. Limit theorems for the position of a tagged particle in the stirring-exclusion process. Front. Math. China, 2013, 8(3): 479-496 DOI:10.1007/s11464-013-0283-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arratia R. The motion of a tagged particle in the simple symmetric exclusion system on ℤ1. Ann Probab, 1983, 11: 362-373

[2]

Da Prato G, Zabczyk J. Ergodicity for Infinite Dimensional Systems, 1996, Cambridge: Cambridge University Press

[3]

De Masi A, Ferrari P A. Flux fluctuations in the one dimensional nearest neighbors symmetric simple exclusion process. J Stat Phys, 2002, 107(3–4): 677-683

[4]

De Masi A, Ferrari P A, Goldstein S, Wick W D. An invariance principle for reversible Markov processes. Applications to random motions in random environments. J Stat Phys, 1989, 55(3–4): 787-855

[5]

Feller W. An Introduction to Probability Theory and Its Applications. Vol II, 1971 2nd ed New York: John Wiley & Sons

[6]

Ferrari P A. Limit theorems for tagged particles. Disordered systems and statistical physics: rigorous results. Markov Process Related Fields, 1996, 2(1): 17-40

[7]

Ferrari P A, Fontes L R G. Poissonian approximation for the tagged particle in asymmetric simple exclusion. J Appl Probab, 1996, 33(2): 411-419

[8]

Kallenberg O. Foundations of Modern Probability, 2002 2nd ed. New York: Springer-Verlag

[9]

Kipnis C. Central limit theorems for infinite series of queues and applications to simple exclusion. Ann Probab, 1986, 14(2): 397-408

[10]

Kipnis C, Landim C. Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften, 320, 1999, Berlin: Springer-Verlag

[11]

Kipnis C, Varadhan S R S. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm Math Phys, 1986, 104(1): 1-19

[12]

Komorowski T, Landim C, Olla S. Fluctuations in Markov Processes. Time Symmetry and Martingale Approximation. Grundlehren der Mathematischen Wissenschaften, 2012, Heidelberg: Springer

[13]

Landim C. Central limit theorem for Markov processes. From classical to modern probability. Progr Probab, 2003, 54: 145-205

[14]

Landim C, Olla S, Varadhan S R S. Asymptotic behavior of a tagged particle in simple exclusion processes. Bol Soc Brasil Mat (NS), 2000, 31(3): 241-275

[15]

Lebowitz J L, Spohn H. Microscopic basis for Fick’s law for self-diffusion. J Stat Phys, 1982, 28(3): 539-556

[16]

Liggett T M. Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften, 276. New York: Springer-Verlag, 1985

[17]

Liggett T M. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren der Mathematischen Wissenschaften, 324. Berlin: Springer-Verlag, 1999

[18]

Olla S. Notes on the central limit theorems for tagged particles and diffusions in random fields. Given at Etàts de la recherche: Milieux Alèatoires. Panor Synthèses, 2001, 12: 75-100

[19]

Peligrad M, Sethuraman S. On fractional Brownian motion limits in one dimensional nearest-neighbor symmetric simple exclusion. ALEA, 2008, 4: 245-255

[20]

Saada E. A limit theorem for the position of a tagged particle in a simple exclusion process. Ann Probab, 1987, 15(1): 375-381

[21]

Sethuraman S. On extremal measures for conservative particle systems. Ann Inst Henri Poincaré Probab Stat, 2001, 37(2): 139-154

[22]

Sethuraman S. Diffusive variance for a tagged particle in d ⩽ 2 asymmetric simple exclusion. ALEA, 2006, 1: 305-332

[23]

Sethuraman S, Varadhan S R S, Yau H T. Diffusive limit of a tagged particle in asymmetric simple exclusion processes. Comm Pure Appl Math, 2000, 53(8): 972-1006

[24]

Spitzer F. Interaction of Markov Processes. Adv Math, 1971, 5: 256-290

[25]

Spohn H. Large Scale Dynamics of Interacting Particles, 1991, Berlin: Springer-Verlag

[26]

Varadhan S R S. Self-diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion. Ann Inst Henri Poincaré Probab Stat, 1995, 31(1): 273-285

AI Summary AI Mindmap
PDF (167KB)

822

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/