RESEARCH ARTICLE

Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems

  • Yuelong TANG 1 ,
  • Yanping CHEN , 2
Expand
  • 1. Department of Mathematics and Computational Science, Hunan University of Science and Engineering, Yongzhou 425100, China
  • 2. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

Received date: 26 Jul 2012

Accepted date: 15 Aug 2012

Published date: 01 Apr 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.

Cite this article

Yuelong TANG , Yanping CHEN . Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems[J]. Frontiers of Mathematics in China, 2013 , 8(2) : 443 -464 . DOI: 10.1007/s11464-013-0239-4

1
Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York: Wiley Interscience, 2000

DOI

2
Arada N, Casas E, Tröltzsch F. Error estimates for semilinear elliptic control problem. Comput Optim Appl, 2002, 23: 201-229

DOI

3
Babuˇska I, Strouboulis T, Upadhyay C S, Gangaraj S K. A posteriori estimation and daptive control of the pollution error in the h-version of the finite element method. Int J Numer Methods Eng, 1995, 38(24): 4207-4235

DOI

4
Becker R, Kapp H, Rannacher R. Adaptive finite element methods for optimal control of partial defferential equations: basic concept. SIAM J Control Optim, 2000, 39(1): 113-132

DOI

5
Becker R, Meidner D, Vexler B. Efficient numerical solution of parabolic optimization problems by finite element methods. Optim Methods Softw, 2007, 22(5): 813-833

DOI

6
Brandts J. Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer Math, 1994, 68: 311-324

DOI

7
Casas E, Tröltzsch F. Second-order necessary and sufficient optimality conditions for optimization problems and applications to control theory. SIAM J Optim, 2002, 13(2): 406-431

DOI

8
Casas E, Tröltzsch F, Unger A. Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J Control Optim, 2000, 38(5): 1369-1391

DOI

9
Chen C, Huang Y. High Accuracy Theory of Finite Element Methods. Hunan: Hunan Science and Technology Press, 1995 (in Chinese)

10
Chen Y. Superconvergence of mixed finite element methods for optimal control problems. Math Comp, 2008, 77: 1269-1291

DOI

11
Chen Y. Superconvergence of quadratic optimal control problems by triangular mixed finite elements. Int J Numer Methods Eng, 2008, 75(8): 881-898

DOI

12
Chen Y, Dai L, Lu Z. Superconvergence of rectangular mixed finite element methods for constrained optimal control problem. Adv Appl Math Mech, 2010, 2: 56-75

13
Chen Y, Dai Y. Superconvergence for optimal control problems governed by semi-linear elliptic equations. J Sci Comput, 2009, 39: 206-221

DOI

14
Chen Y, Huang Y, Liu W, Yan N. Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. J Sci Comput, 2010, 42: 382-403

DOI

15
Chen Y, Liu W. Error estimates and superconvergence of mixed finite element for quadratic optimal control. Int J Numer Anal Model, 2006, 3: 311-321

16
Chen Y, Lu Z, Guo R. Error estimates of triangular mixed finite element methods for quasilinear optimal control problems. Front Math China, 2012, 7(3): 397-413

DOI

17
Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978

18
Huang Y, Xu J. Superconvergence of quadratic finite elements on mildly structured grids. Math Comp, 2008, 77: 1253-1268

DOI

19
Knowles G. Finite element approximation of parabolic time optimal control problems. SIAM J Control Optim, 1982, 20(3): 414-427

DOI

20
Kufner A, John O, Fuck S. Function Spaces. Leyden: Nordhoff, 1997

21
Li R, Liu W, Yan N. A posteriori error estimates of recovery type for distributed convex optimal control problems. J Sci Comput, 2007, 33: 155-182

DOI

22
Lin Q, Zhu Q. The Preprocessing and Postprocessing for the Finite Element Method. Shanghai: Shanghai Scientific and Technical Publishers, 1994 (in Chinese)

23
Lions J. Optimal Control of Systems Governed by Partial Differential Equations. Berlin: Springer-Verlag, 1971

DOI

24
Lions J, Magenes E. Non Homogeneous Boundary Value Problems and Applications. Berlin: Springer-Verlag, 1972

25
Liu H, Yan N. Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations. J Comput Appl Math, 2007, 209: 187-207

DOI

26
Liu W, Yan N. A posteriori error estimates for optimal control problems governed by parabolic equations. Numer Math, 2003, 93: 497-521

DOI

27
Liu W, Yan N. A posteriori error estimates for control problems governed by nonlinear elliptic equations. Appl Numer Math, 2003, 47: 173-187

DOI

28
Liu W, Yan N. Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Beijing: Science Press, 2008

29
Meidner D, Vexler B. Adaptive space-time finite element methods for parabolic optimization problems. SIAM J Control Optim, 2007, 46(1): 116-142

DOI

30
Meidner D, Vexler B. A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: problems without control constraints. SIAM J Control Optim, 2008, 47(3): 1150-1177

DOI

31
Meidner D, Vexler B. A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part II: problems with control constraints. SIAM J Control Optim, 2008, 47(3): 1301-1329

DOI

32
Meyer C, Rösch A. Superconvergence properties of optimal control problems. SIAM J Control Optim, 2004, 43(3): 970-985

DOI

33
Neittaanmaki P, Tiba D. Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. New York: Dekker, 1994

34
Pao C. Nonlinear Parabolic and Elliptic Equations. New York: Plenum Press, 1992

35
Thomée V. Galekin Finite Element Methods for Parabolic Problems. Berlin: Springer-Verlag, 1997

DOI

36
Tiba D. Lectures on The Optimal Control of Elliptic Equations. Finland: University of Jyvaskyla Press, 1995

37
Xiong C, Li Y. A posteriori error estimates for optimal distributed control governed by the evolution equations. Appl Numer Math, 2011, 61: 181-200

DOI

38
Yan N, Zhou Z. A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations. Front Math China, 2008, 3(3): 415-442

DOI

39
Yang D, Chang Y, Liu W. A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type. J Comput Math, 2008, 26(4): 471-487

40
Zhou J, Chen Y, Dai Y. Superconvergence of triangular mixed finite elements for optimal control problems with an integral constraint. Appl Math Comput, 2010, 217: 2057-2066

DOI

41
Zienkiwicz O C, Zhu J Z. The superconvergence patch recovery and a poseriori error estimates. Int J Numer Methods Eng, 1992, 33: 1331-1382

DOI

42
Zienkiwicz O C, Zhu J Z. The superconvergence patch recovery (SPR) and adaptive finite element refinement. Comput Methods Appl Math, 1992, 101: 207-224

Options
Outlines

/