Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems

Yuelong Tang , Yanping Chen

Front. Math. China ›› 2013, Vol. 8 ›› Issue (2) : 443 -464.

PDF (1214KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (2) : 443 -464. DOI: 10.1007/s11464-013-0239-4
Research Article
RESEARCH ARTICLE

Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems

Author information +
History +
PDF (1214KB)

Abstract

We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.

Keywords

Superconvergence property / quadratic optimal control problem / fully discrete finite element approximation / semilinear parabolic equation / interpolate operator

Cite this article

Download citation ▾
Yuelong Tang, Yanping Chen. Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems. Front. Math. China, 2013, 8(2): 443-464 DOI:10.1007/s11464-013-0239-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis, 2000, New York: Wiley Interscience

[2]

Arada N, Casas E, Tröltzsch F. Error estimates for semilinear elliptic control problem. Comput Optim Appl, 2002, 23: 201-229

[3]

Babuška I, Strouboulis T, Upadhyay C S, Gangaraj S K. A posteriori estimation and adaptive control of the pollution error in the h-version of the finite element method. Int J Numer Methods Eng, 1995, 38(24): 4207-4235

[4]

Becker R, Kapp H, Rannacher R. Adaptive finite element methods for optimal control of partial defferential equations: basic concept. SIAM J Control Optim, 2000, 39(1): 113-132

[5]

Becker R, Meidner D, Vexler B. Efficient numerical solution of parabolic optimization problems by finite element methods. Optim Methods Softw, 2007, 22(5): 813-833

[6]

Brandts J. Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer Math, 1994, 68: 311-324

[7]

Casas E, Tröltzsch F. Second-order necessary and sufficient optimality conditions for optimization problems and applications to control theory. SIAM J Optim, 2002, 13(2): 406-431

[8]

Casas E, Tröltzsch F, Unger A. Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J Control Optim, 2000, 38(5): 1369-1391

[9]

Chen C, Huang Y. High Accuracy Theory of Finite Element Methods, 1995, Hunan: Hunan Science and Technology Press

[10]

Chen Y. Superconvergence of mixed finite element methods for optimal control problems. Math Comp, 2008, 77: 1269-1291

[11]

Chen Y. Superconvergence of quadratic optimal control problems by triangular mixed finite elements. Int J Numer Methods Eng, 2008, 75(8): 881-898

[12]

Chen Y, Dai L, Lu Z. Superconvergence of rectangular mixed finite element methods for constrained optimal control problem. Adv Appl Math Mech, 2010, 2: 56-75

[13]

Chen Y, Dai Y. Superconvergence for optimal control problems governed by semi-linear elliptic equations. J Sci Comput, 2009, 39: 206-221

[14]

Chen Y, Huang Y, Liu W, Yan N. Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. J Sci Comput, 2010, 42: 382-403

[15]

Chen Y, Liu W. Error estimates and superconvergence of mixed finite element for quadratic optimal control. Int J Numer Anal Model, 2006, 3: 311-321

[16]

Chen Y, Lu Z, Guo R. Error estimates of triangular mixed finite element methods for quasilinear optimal control problems. Front Math China, 2012, 7(3): 397-413

[17]

Ciarlet P G. The Finite Element Method for Elliptic Problems, 1978, Amsterdam: North-Holland

[18]

Huang Y, Xu J. Superconvergence of quadratic finite elements on mildly structured grids. Math Comp, 2008, 77: 1253-1268

[19]

Knowles G. Finite element approximation of parabolic time optimal control problems. SIAM J Control Optim, 1982, 20(3): 414-427

[20]

Kufner A, John O, Fuck S. Function Spaces, 1997, Leyden: Nordhoff

[21]

Li R, Liu W, Yan N. A posteriori error estimates of recovery type for distributed convex optimal control problems. J Sci Comput, 2007, 33: 155-182

[22]

Lin Q, Zhu Q. The Preprocessing and Postprocessing for the Finite Element Method, 1994, Shanghai: Shanghai Scientific and Technical Publishers

[23]

Lions J. Optimal Control of Systems Governed by Partial Differential Equations, 1971, Berlin: Springer-Verlag

[24]

Lions J, Magenes E. Non Homogeneous Boundary Value Problems and Applications, 1972, Berlin: Springer-Verlag

[25]

Liu H, Yan N. Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations. J Comput Appl Math, 2007, 209: 187-207

[26]

Liu W, Yan N. A posteriori error estimates for optimal control problems governed by parabolic equations. Numer Math, 2003, 93: 497-521

[27]

Liu W, Yan N. A posteriori error estimates for control problems governed by nonlinear elliptic equations. Appl Numer Math, 2003, 47: 173-187

[28]

Liu W, Yan N. Adaptive Finite Element Methods for Optimal Control Governed by PDEs, 2008, Beijing: Science Press

[29]

Meidner D, Vexler B. Adaptive space-time finite element methods for parabolic optimization problems. SIAM J Control Optim, 2007, 46(1): 116-142

[30]

Meidner D, Vexler B. A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: problems without control constraints. SIAM J Control Optim, 2008, 47(3): 1150-1177

[31]

Meidner D, Vexler B. A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part II: problems with control constraints. SIAM J Control Optim, 2008, 47(3): 1301-1329

[32]

Meyer C, Rösch A. Superconvergence properties of optimal control problems. SIAM J Control Optim, 2004, 43(3): 970-985

[33]

Neittaanmaki P, Tiba D. Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, 1994, New York: Dekker

[34]

Pao C. Nonlinear Parabolic and Elliptic Equations, 1992, New York: Plenum Press

[35]

Thomée V. Galekin Finite Element Methods for Parabolic Problems, 1997, Berlin: Springer-Verlag

[36]

Tiba D. Lectures on The Optimal Control of Elliptic Equations, 1995, Finland: University of Jyvaskyla Press

[37]

Xiong C, Li Y. A posteriori error estimates for optimal distributed control governed by the evolution equations. Appl Numer Math, 2011, 61: 181-200

[38]

Yan N, Zhou Z. A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations. Front Math China, 2008, 3(3): 415-442

[39]

Yang D, Chang Y, Liu W. A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type. J Comput Math, 2008, 26(4): 471-487

[40]

Zhou J, Chen Y, Dai Y. Superconvergence of triangular mixed finite elements for optimal control problems with an integral constraint. Appl Math Comput, 2010, 217: 2057-2066

[41]

Zienkiwicz O C, Zhu J Z. The superconvergence patch recovery and a poseriori error estimates. Int J Numer Methods Eng, 1992, 33: 1331-1382

[42]

Zienkiwicz O C, Zhu J Z. The superconvergence patch recovery (SPR) and adaptive finite element refinement. Comput Methods Appl Math, 1992, 101: 207-224

AI Summary AI Mindmap
PDF (1214KB)

739

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/