Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems
Yuelong TANG, Yanping CHEN
Superconvergence analysis of fully discrete finite element methods for semilinear parabolic optimal control problems
We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.
Superconvergence property / quadratic optimal control problem / fully discrete finite element approximation / semilinear parabolic equation / interpolate operator
[1] |
Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York: Wiley Interscience, 2000
CrossRef
Google scholar
|
[2] |
Arada N, Casas E, Tröltzsch F. Error estimates for semilinear elliptic control problem. Comput Optim Appl, 2002, 23: 201-229
CrossRef
Google scholar
|
[3] |
Babuˇska I, Strouboulis T, Upadhyay C S, Gangaraj S K. A posteriori estimation and daptive control of the pollution error in the h-version of the finite element method. Int J Numer Methods Eng, 1995, 38(24): 4207-4235
CrossRef
Google scholar
|
[4] |
Becker R, Kapp H, Rannacher R. Adaptive finite element methods for optimal control of partial defferential equations: basic concept. SIAM J Control Optim, 2000, 39(1): 113-132
CrossRef
Google scholar
|
[5] |
Becker R, Meidner D, Vexler B. Efficient numerical solution of parabolic optimization problems by finite element methods. Optim Methods Softw, 2007, 22(5): 813-833
CrossRef
Google scholar
|
[6] |
Brandts J. Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer Math, 1994, 68: 311-324
CrossRef
Google scholar
|
[7] |
Casas E, Tröltzsch F. Second-order necessary and sufficient optimality conditions for optimization problems and applications to control theory. SIAM J Optim, 2002, 13(2): 406-431
CrossRef
Google scholar
|
[8] |
Casas E, Tröltzsch F, Unger A. Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J Control Optim, 2000, 38(5): 1369-1391
CrossRef
Google scholar
|
[9] |
Chen C, Huang Y. High Accuracy Theory of Finite Element Methods. Hunan: Hunan Science and Technology Press, 1995 (in Chinese)
|
[10] |
Chen Y. Superconvergence of mixed finite element methods for optimal control problems. Math Comp, 2008, 77: 1269-1291
CrossRef
Google scholar
|
[11] |
Chen Y. Superconvergence of quadratic optimal control problems by triangular mixed finite elements. Int J Numer Methods Eng, 2008, 75(8): 881-898
CrossRef
Google scholar
|
[12] |
Chen Y, Dai L, Lu Z. Superconvergence of rectangular mixed finite element methods for constrained optimal control problem. Adv Appl Math Mech, 2010, 2: 56-75
|
[13] |
Chen Y, Dai Y. Superconvergence for optimal control problems governed by semi-linear elliptic equations. J Sci Comput, 2009, 39: 206-221
CrossRef
Google scholar
|
[14] |
Chen Y, Huang Y, Liu W, Yan N. Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. J Sci Comput, 2010, 42: 382-403
CrossRef
Google scholar
|
[15] |
Chen Y, Liu W. Error estimates and superconvergence of mixed finite element for quadratic optimal control. Int J Numer Anal Model, 2006, 3: 311-321
|
[16] |
Chen Y, Lu Z, Guo R. Error estimates of triangular mixed finite element methods for quasilinear optimal control problems. Front Math China, 2012, 7(3): 397-413
CrossRef
Google scholar
|
[17] |
Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978
|
[18] |
Huang Y, Xu J. Superconvergence of quadratic finite elements on mildly structured grids. Math Comp, 2008, 77: 1253-1268
CrossRef
Google scholar
|
[19] |
Knowles G. Finite element approximation of parabolic time optimal control problems. SIAM J Control Optim, 1982, 20(3): 414-427
CrossRef
Google scholar
|
[20] |
Kufner A, John O, Fuck S. Function Spaces. Leyden: Nordhoff, 1997
|
[21] |
Li R, Liu W, Yan N. A posteriori error estimates of recovery type for distributed convex optimal control problems. J Sci Comput, 2007, 33: 155-182
CrossRef
Google scholar
|
[22] |
Lin Q, Zhu Q. The Preprocessing and Postprocessing for the Finite Element Method. Shanghai: Shanghai Scientific and Technical Publishers, 1994 (in Chinese)
|
[23] |
Lions J. Optimal Control of Systems Governed by Partial Differential Equations. Berlin: Springer-Verlag, 1971
CrossRef
Google scholar
|
[24] |
Lions J, Magenes E. Non Homogeneous Boundary Value Problems and Applications. Berlin: Springer-Verlag, 1972
|
[25] |
Liu H, Yan N. Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations. J Comput Appl Math, 2007, 209: 187-207
CrossRef
Google scholar
|
[26] |
Liu W, Yan N. A posteriori error estimates for optimal control problems governed by parabolic equations. Numer Math, 2003, 93: 497-521
CrossRef
Google scholar
|
[27] |
Liu W, Yan N. A posteriori error estimates for control problems governed by nonlinear elliptic equations. Appl Numer Math, 2003, 47: 173-187
CrossRef
Google scholar
|
[28] |
Liu W, Yan N. Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Beijing: Science Press, 2008
|
[29] |
Meidner D, Vexler B. Adaptive space-time finite element methods for parabolic optimization problems. SIAM J Control Optim, 2007, 46(1): 116-142
CrossRef
Google scholar
|
[30] |
Meidner D, Vexler B. A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: problems without control constraints. SIAM J Control Optim, 2008, 47(3): 1150-1177
CrossRef
Google scholar
|
[31] |
Meidner D, Vexler B. A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part II: problems with control constraints. SIAM J Control Optim, 2008, 47(3): 1301-1329
CrossRef
Google scholar
|
[32] |
Meyer C, Rösch A. Superconvergence properties of optimal control problems. SIAM J Control Optim, 2004, 43(3): 970-985
CrossRef
Google scholar
|
[33] |
Neittaanmaki P, Tiba D. Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. New York: Dekker, 1994
|
[34] |
Pao C. Nonlinear Parabolic and Elliptic Equations. New York: Plenum Press, 1992
|
[35] |
Thomée V. Galekin Finite Element Methods for Parabolic Problems. Berlin: Springer-Verlag, 1997
CrossRef
Google scholar
|
[36] |
Tiba D. Lectures on The Optimal Control of Elliptic Equations. Finland: University of Jyvaskyla Press, 1995
|
[37] |
Xiong C, Li Y. A posteriori error estimates for optimal distributed control governed by the evolution equations. Appl Numer Math, 2011, 61: 181-200
CrossRef
Google scholar
|
[38] |
Yan N, Zhou Z. A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations. Front Math China, 2008, 3(3): 415-442
CrossRef
Google scholar
|
[39] |
Yang D, Chang Y, Liu W. A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type. J Comput Math, 2008, 26(4): 471-487
|
[40] |
Zhou J, Chen Y, Dai Y. Superconvergence of triangular mixed finite elements for optimal control problems with an integral constraint. Appl Math Comput, 2010, 217: 2057-2066
CrossRef
Google scholar
|
[41] |
Zienkiwicz O C, Zhu J Z. The superconvergence patch recovery and a poseriori error estimates. Int J Numer Methods Eng, 1992, 33: 1331-1382
CrossRef
Google scholar
|
[42] |
Zienkiwicz O C, Zhu J Z. The superconvergence patch recovery (SPR) and adaptive finite element refinement. Comput Methods Appl Math, 1992, 101: 207-224
|
/
〈 | 〉 |