Whittaker modules over loop Virasoro algebra
Received date: 17 Mar 2011
Accepted date: 08 Mar 2012
Published date: 01 Apr 2013
Copyright
In this paper, we study Whittaker modules over the loop Virasoro algebra relative to some total order. We give a description of all Whittaker vectors for the universal Whittaker modules. We also show that any universal Whittaker module admits a unique simple quotient modules except for a special case.
Key words: Loop Virasoro algebra; Whittaker module; Whittaker vector
Xuewen LIU , Xiangqian GUO . Whittaker modules over loop Virasoro algebra[J]. Frontiers of Mathematics in China, 0 , 8(2) : 393 -410 . DOI: 10.1007/s11464-012-0205-6
1 |
Arnal D, Pinczon G. On algebraically irreducible representations of the Lie algebra sl2. J Math Phys, 1974, 15: 350-359
|
2 |
Backelin E. Representation of the category
|
3 |
Batra P, Mazorchuk V. Blocks and modules for Whittaker pairs. J Pure Appl Algebra, 2011, 215(7): 1552-1568
|
4 |
Benkart G, Ondrus M. Whittaker modules for generalized Weyl algebras. Represent Theory, 2009, 13: 141-164
|
5 |
Block R. The irreducible representations of the Lie algebra
|
6 |
Christodoupoulou K. Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J Algebra, 2008, 320(7): 2871-2890
|
7 |
Guo X, Liu X. Weight modules with a finite dimensional weight space over truncated Virasoro algebras. J Math Phys, 2010, 51: 123522
|
8 |
Guo X, Liu X. Whittaker modules over generalized Virasoro algebras. Comm Algebra, 2011, 39(9): 3222-3231
|
9 |
Guo X, Liu X. Whittaker modules over Virasoro-like algebras. J Math Phys, 2011, 52: 093504
|
10 |
Guo X, Lu R, Zhao K. Simple Harish-Chandra modules, intermediate series modules and Verma modules over the loop-Virasoro algebra. Forum Math, 2011, 23: 1029-1052
|
11 |
Guo X, Lu R, Zhao K.
|
12 |
Khomenko O, Mazorchuk V. Structure of modules induced from simple modules with minimal annihilator. Canad J Math, 2004, 56(2): 293-309
|
13 |
Kostant B. On Whittaker vectors and representation theory. Invent Math, 1978, 48(2): 101-184
|
14 |
Li J, Wang B. Whittaker modules for the W-algebra W(2, 2). Preprint
|
15 |
Liu D, Gao S, Zhu L. Classification of irreducible weight modules over W-algebra W(2, 2). J Math Phys, 2008, 49(11): 113503
|
16 |
Liu D, Wu Y, Zhu L. Whittaker modules for the twisted Heisenberg-Virasoro algebra. J Math Phys, 2010, 51(2): 023524
|
17 |
Liu D, Zhu L. Classification of Harish-Chandra modules over the W-algebra W(2, 2). ArXiv: 0801.2601
|
18 |
Lu R, Guo X, Zhao K. Irreducible modules over the Virasoro algebra. Doc Math, 2011, 16: 709-721
|
19 |
McDowell E. On modules induced from Whittaker modules. J Algebra, 1985, 96(1): 161-177
|
20 |
McDowell E. A module induced from a Whittaker module. Proc Amer Math Soc, 1993, 118(2): 349-354
|
21 |
Milicic D, Soergel W. The composition series of modules induced from Whittaker modules. Comment Math Helv, 1997, 72(4): 503-520
|
22 |
Milicic D, Soergel W. Twisted Harish-Chandra sheaves and Whittaker modules: The non-degenerate case. Preprint. http://home.mathematik.uni-freiburg.de/soergel/
|
23 |
Ondrus M. Whittaker modules for Uq(
|
24 |
Ondrus M. Tensor products and Whittaker vectors for quantum groups. Comm Algebra, 2007, 35(8): 2506-2523
|
25 |
Ondrus M, Wiesner E. Whittaker modules for the Virasoro algebra. J Algebra Appl, 2009, 8(3): 363-377
|
26 |
Sevostyanov A. Quantum deformation of Whittaker modules and the Toda lattice. Duke Math J, 2000, 105(2): 211-238
|
27 |
Tang X. On Whittaker modules over a class of algebras similar to U(sl2). Front Math China, 2007, 2(1): 127-142
|
28 |
Wang B. Whittaker modules for graded Lie algebras. Preprint. ArXiv: 0902.3801
|
29 |
Wang B, Zhu X. Whittaker modules for a Lie algebra of Block type. Preprint. ArXiv: 0907.0773
|
30 |
Wang X, Zhao K. Verma modules over Virasoro-like algebras. J Aust Math Soc, 2006, 80(2): 179-191
|
31 |
Wilson B J. Highest weight theory for truncated current Lie algebras. Preprint. ArXiv: 0705.1203
|
32 |
Wilson B J. Representations of truncated current Lie algebras. Aust Math Soc Gaz, 2007, 34(5): 279-282
|
33 |
Zhang W, Dong C. W-algebra W(2, 2) and the vertex operator algebra L(1/2, 0) ⊗ L(1/2, 0). Comm Math Phys, 2009, 285: 991-1004
|
34 |
Zhang X, Tan S, Lian H. Whittaker modules for the Schrŏdinger-Witt algebra. J Math Phys, 2010, 51(8): 083524
|
/
〈 | 〉 |