RESEARCH ARTICLE

Whittaker modules over loop Virasoro algebra

  • Xuewen LIU ,
  • Xiangqian GUO
Expand
  • Department of Mathematics, Zhengzhou University, Zhengzhou 450001, China

Received date: 17 Mar 2011

Accepted date: 08 Mar 2012

Published date: 01 Apr 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, we study Whittaker modules over the loop Virasoro algebra relative to some total order. We give a description of all Whittaker vectors for the universal Whittaker modules. We also show that any universal Whittaker module admits a unique simple quotient modules except for a special case.

Cite this article

Xuewen LIU , Xiangqian GUO . Whittaker modules over loop Virasoro algebra[J]. Frontiers of Mathematics in China, 0 , 8(2) : 393 -410 . DOI: 10.1007/s11464-012-0205-6

1
Arnal D, Pinczon G. On algebraically irreducible representations of the Lie algebra sl2. J Math Phys, 1974, 15: 350-359

DOI

2
Backelin E. Representation of the category in Whittaker categories. Internat Math Res Notices, 1997, 4: 153-172

DOI

3
Batra P, Mazorchuk V. Blocks and modules for Whittaker pairs. J Pure Appl Algebra, 2011, 215(7): 1552-1568

DOI

4
Benkart G, Ondrus M. Whittaker modules for generalized Weyl algebras. Represent Theory, 2009, 13: 141-164

DOI

5
Block R. The irreducible representations of the Lie algebra (2) and of the Weyl algebra. Adv Math, 1981, 39: 69-110

DOI

6
Christodoupoulou K. Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J Algebra, 2008, 320(7): 2871-2890

DOI

7
Guo X, Liu X. Weight modules with a finite dimensional weight space over truncated Virasoro algebras. J Math Phys, 2010, 51: 123522

DOI

8
Guo X, Liu X. Whittaker modules over generalized Virasoro algebras. Comm Algebra, 2011, 39(9): 3222-3231

DOI

9
Guo X, Liu X. Whittaker modules over Virasoro-like algebras. J Math Phys, 2011, 52: 093504

DOI

10
Guo X, Lu R, Zhao K. Simple Harish-Chandra modules, intermediate series modules and Verma modules over the loop-Virasoro algebra. Forum Math, 2011, 23: 1029-1052

DOI

11
Guo X, Lu R, Zhao K. ℤ2-graded simple modules over the loop-Virasoro algebra. Preprint

12
Khomenko O, Mazorchuk V. Structure of modules induced from simple modules with minimal annihilator. Canad J Math, 2004, 56(2): 293-309

DOI

13
Kostant B. On Whittaker vectors and representation theory. Invent Math, 1978, 48(2): 101-184

DOI

14
Li J, Wang B. Whittaker modules for the W-algebra W(2, 2). Preprint

15
Liu D, Gao S, Zhu L. Classification of irreducible weight modules over W-algebra W(2, 2). J Math Phys, 2008, 49(11): 113503

DOI

16
Liu D, Wu Y, Zhu L. Whittaker modules for the twisted Heisenberg-Virasoro algebra. J Math Phys, 2010, 51(2): 023524

DOI

17
Liu D, Zhu L. Classification of Harish-Chandra modules over the W-algebra W(2, 2). ArXiv: 0801.2601

18
Lu R, Guo X, Zhao K. Irreducible modules over the Virasoro algebra. Doc Math, 2011, 16: 709-721

19
McDowell E. On modules induced from Whittaker modules. J Algebra, 1985, 96(1): 161-177

DOI

20
McDowell E. A module induced from a Whittaker module. Proc Amer Math Soc, 1993, 118(2): 349-354

DOI

21
Milicic D, Soergel W. The composition series of modules induced from Whittaker modules. Comment Math Helv, 1997, 72(4): 503-520

DOI

22
Milicic D, Soergel W. Twisted Harish-Chandra sheaves and Whittaker modules: The non-degenerate case. Preprint. http://home.mathematik.uni-freiburg.de/soergel/

23
Ondrus M. Whittaker modules for Uq(2). J Algebra, 2005, 289(1): 192-213

DOI

24
Ondrus M. Tensor products and Whittaker vectors for quantum groups. Comm Algebra, 2007, 35(8): 2506-2523

DOI

25
Ondrus M, Wiesner E. Whittaker modules for the Virasoro algebra. J Algebra Appl, 2009, 8(3): 363-377

DOI

26
Sevostyanov A. Quantum deformation of Whittaker modules and the Toda lattice. Duke Math J, 2000, 105(2): 211-238

DOI

27
Tang X. On Whittaker modules over a class of algebras similar to U(sl2). Front Math China, 2007, 2(1): 127-142

DOI

28
Wang B. Whittaker modules for graded Lie algebras. Preprint. ArXiv: 0902.3801

29
Wang B, Zhu X. Whittaker modules for a Lie algebra of Block type. Preprint. ArXiv: 0907.0773

30
Wang X, Zhao K. Verma modules over Virasoro-like algebras. J Aust Math Soc, 2006, 80(2): 179-191

DOI

31
Wilson B J. Highest weight theory for truncated current Lie algebras. Preprint. ArXiv: 0705.1203

32
Wilson B J. Representations of truncated current Lie algebras. Aust Math Soc Gaz, 2007, 34(5): 279-282

33
Zhang W, Dong C. W-algebra W(2, 2) and the vertex operator algebra L(1/2, 0) ⊗ L(1/2, 0). Comm Math Phys, 2009, 285: 991-1004

DOI

34
Zhang X, Tan S, Lian H. Whittaker modules for the Schrŏdinger-Witt algebra. J Math Phys, 2010, 51(8): 083524

DOI

Options
Outlines

/