Whittaker modules over loop Virasoro algebra

Xuewen Liu , Xiangqian Guo

Front. Math. China ›› 2012, Vol. 8 ›› Issue (2) : 393 -410.

PDF (156KB)
Front. Math. China ›› 2012, Vol. 8 ›› Issue (2) : 393 -410. DOI: 10.1007/s11464-012-0205-6
Research Article
RESEARCH ARTICLE

Whittaker modules over loop Virasoro algebra

Author information +
History +
PDF (156KB)

Abstract

In this paper, we study Whittaker modules over the loop Virasoro algebra relative to some total order. We give a description of all Whittaker vectors for the universal Whittaker modules. We also show that any universal Whittaker module admits a unique simple quotient modules except for a special case.

Keywords

Loop Virasoro algebra / Whittaker module / Whittaker vector

Cite this article

Download citation ▾
Xuewen Liu, Xiangqian Guo. Whittaker modules over loop Virasoro algebra. Front. Math. China, 2012, 8(2): 393-410 DOI:10.1007/s11464-012-0205-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnal D., Pinczon G.. On algebraically irreducible representations of the Lie algebra sl2. J Math Phys, 1974, 15: 350-359

[2]

Backelin E.. Representation of the category O in Whittaker categories. Internat Math Res Notices, 1997, 4: 153-172

[3]

Batra P., Mazorchuk V.. Blocks and modules for Whittaker pairs. J Pure Appl Algebra, 2011, 215(7): 1552-1568

[4]

Benkart G., Ondrus M.. Whittaker modules for generalized Weyl algebras. Represent Theory, 2009, 13: 141-164

[5]

Block R.. The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra. Adv Math, 1981, 39: 69-110

[6]

Christodoupoulou K.. Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J Algebra, 2008, 320(7): 2871-2890

[7]

Guo X., Liu X.. Weight modules with a finite dimensional weight space over truncated Virasoro algebras. J Math Phys, 2010, 51: 123522

[8]

Guo X., Liu X.. Whittaker modules over generalized Virasoro algebras. Comm Algebra, 2011, 39(9): 3222-3231

[9]

Guo X., Liu X.. Whittaker modules over Virasoro-like algebras. J Math Phys, 2011, 52: 093504

[10]

Guo X., Lu R., Zhao K.. Simple Harish-Chandra modules, intermediate series modules and Verma modules over the loop-Virasoro algebra. Forum Math, 2011, 23: 1029-1052

[11]

Guo X, Lu R, Zhao K. ℤ2-graded simple modules over the loop-Virasoro algebra. Preprint

[12]

Khomenko O., Mazorchuk V.. Structure of modules induced from simple modules with minimal annihilator. Canad J Math, 2004, 56(2): 293-309

[13]

Kostant B.. On Whittaker vectors and representation theory. Invent Math, 1978, 48(2): 101-184

[14]

Li J, Wang B. Whittaker modules for the W-algebra W(2, 2). Preprint

[15]

Liu D., Gao S., Zhu L.. Classification of irreducible weight modules over W-algebra W(2, 2). J Math Phys, 2008, 49(11): 113503

[16]

Liu D., Wu Y., Zhu L.. Whittaker modules for the twisted Heisenberg-Virasoro algebra. J Math Phys, 2010, 51(2): 023524

[17]

Liu D, Zhu L. Classification of Harish-Chandra modules over the W-algebra W(2, 2). ArXiv: 0801.2601

[18]

Lu R., Guo X., Zhao K.. Irreducible modules over the Virasoro algebra. Doc Math, 2011, 16: 709-721

[19]

McDowell E.. On modules induced from Whittaker modules. J Algebra, 1985, 96(1): 161-177

[20]

McDowell E.. A module induced from a Whittaker module. Proc Amer Math Soc, 1993, 118(2): 349-354

[21]

Milicic D., Soergel W.. The composition series of modules induced from Whittaker modules. Comment Math Helv, 1997, 72(4): 503-520

[22]

Milicic D, Soergel W. Twisted Harish-Chandra sheaves and Whittaker modules: The non-degenerate case. Preprint. http://home.mathematik.uni-freiburg.de/soergel/

[23]

Ondrus M.. Whittaker modules for Uq(sl2). J Algebra, 2005, 289(1): 192-213

[24]

Ondrus M.. Tensor products and Whittaker vectors for quantum groups. Comm Algebra, 2007, 35(8): 2506-2523

[25]

Ondrus M., Wiesner E.. Whittaker modules for the Virasoro algebra. J Algebra Appl, 2009, 8(3): 363-377

[26]

Sevostyanov A.. Quantum deformation of Whittaker modules and the Toda lattice. Duke Math J, 2000, 105(2): 211-238

[27]

Tang X.. On Whittaker modules over a class of algebras similar to U(sl2). Front Math China, 2007, 2(1): 127-142

[28]

Wang B. Whittaker modules for graded Lie algebras. Preprint. ArXiv: 0902.3801

[29]

Wang B, Zhu X. Whittaker modules for a Lie algebra of Block type. Preprint. ArXiv: 0907.0773

[30]

Wang X., Zhao K.. Verma modules over Virasoro-like algebras. J Aust Math Soc, 2006, 80(2): 179-191

[31]

Wilson B J. Highest weight theory for truncated current Lie algebras. Preprint. ArXiv: 0705.1203

[32]

Wilson B. J.. Representations of truncated current Lie algebras. Aust Math Soc Gaz, 2007, 34(5): 279-282

[33]

Zhang W., Dong C.. W-algebra W(2, 2) and the vertex operator algebra L(1/2, 0) ⊗ L(1/2, 0). Comm Math Phys, 2009, 285: 991-1004

[34]

Zhang X., Tan S., Lian H.. Whittaker modules for the Schrödinger-Witt algebra. J Math Phys, 2010, 51(8): 083524

AI Summary AI Mindmap
PDF (156KB)

992

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/