Whittaker modules over loop Virasoro algebra

Xuewen LIU, Xiangqian GUO

PDF(156 KB)
PDF(156 KB)
Front. Math. China ›› DOI: 10.1007/s11464-012-0205-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Whittaker modules over loop Virasoro algebra

Author information +
History +

Abstract

In this paper, we study Whittaker modules over the loop Virasoro algebra relative to some total order. We give a description of all Whittaker vectors for the universal Whittaker modules. We also show that any universal Whittaker module admits a unique simple quotient modules except for a special case.

Keywords

Loop Virasoro algebra / Whittaker module / Whittaker vector

Cite this article

Download citation ▾
Xuewen LIU, Xiangqian GUO. Whittaker modules over loop Virasoro algebra. Front Math Chin, https://doi.org/10.1007/s11464-012-0205-6

References

[1]
Arnal D, Pinczon G. On algebraically irreducible representations of the Lie algebra sl2. J Math Phys, 1974, 15: 350-359
CrossRef Google scholar
[2]
Backelin E. Representation of the category in Whittaker categories. Internat Math Res Notices, 1997, 4: 153-172
CrossRef Google scholar
[3]
Batra P, Mazorchuk V. Blocks and modules for Whittaker pairs. J Pure Appl Algebra, 2011, 215(7): 1552-1568
CrossRef Google scholar
[4]
Benkart G, Ondrus M. Whittaker modules for generalized Weyl algebras. Represent Theory, 2009, 13: 141-164
CrossRef Google scholar
[5]
Block R. The irreducible representations of the Lie algebra (2) and of the Weyl algebra. Adv Math, 1981, 39: 69-110
CrossRef Google scholar
[6]
Christodoupoulou K. Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J Algebra, 2008, 320(7): 2871-2890
CrossRef Google scholar
[7]
Guo X, Liu X. Weight modules with a finite dimensional weight space over truncated Virasoro algebras. J Math Phys, 2010, 51: 123522
CrossRef Google scholar
[8]
Guo X, Liu X. Whittaker modules over generalized Virasoro algebras. Comm Algebra, 2011, 39(9): 3222-3231
CrossRef Google scholar
[9]
Guo X, Liu X. Whittaker modules over Virasoro-like algebras. J Math Phys, 2011, 52: 093504
CrossRef Google scholar
[10]
Guo X, Lu R, Zhao K. Simple Harish-Chandra modules, intermediate series modules and Verma modules over the loop-Virasoro algebra. Forum Math, 2011, 23: 1029-1052
CrossRef Google scholar
[11]
Guo X, Lu R, Zhao K. ℤ2-graded simple modules over the loop-Virasoro algebra. Preprint
[12]
Khomenko O, Mazorchuk V. Structure of modules induced from simple modules with minimal annihilator. Canad J Math, 2004, 56(2): 293-309
CrossRef Google scholar
[13]
Kostant B. On Whittaker vectors and representation theory. Invent Math, 1978, 48(2): 101-184
CrossRef Google scholar
[14]
Li J, Wang B. Whittaker modules for the W-algebra W(2, 2). Preprint
[15]
Liu D, Gao S, Zhu L. Classification of irreducible weight modules over W-algebra W(2, 2). J Math Phys, 2008, 49(11): 113503
CrossRef Google scholar
[16]
Liu D, Wu Y, Zhu L. Whittaker modules for the twisted Heisenberg-Virasoro algebra. J Math Phys, 2010, 51(2): 023524
CrossRef Google scholar
[17]
Liu D, Zhu L. Classification of Harish-Chandra modules over the W-algebra W(2, 2). ArXiv: 0801.2601
[18]
Lu R, Guo X, Zhao K. Irreducible modules over the Virasoro algebra. Doc Math, 2011, 16: 709-721
[19]
McDowell E. On modules induced from Whittaker modules. J Algebra, 1985, 96(1): 161-177
CrossRef Google scholar
[20]
McDowell E. A module induced from a Whittaker module. Proc Amer Math Soc, 1993, 118(2): 349-354
CrossRef Google scholar
[21]
Milicic D, Soergel W. The composition series of modules induced from Whittaker modules. Comment Math Helv, 1997, 72(4): 503-520
CrossRef Google scholar
[22]
Milicic D, Soergel W. Twisted Harish-Chandra sheaves and Whittaker modules: The non-degenerate case. Preprint. http://home.mathematik.uni-freiburg.de/soergel/
[23]
Ondrus M. Whittaker modules for Uq(2). J Algebra, 2005, 289(1): 192-213
CrossRef Google scholar
[24]
Ondrus M. Tensor products and Whittaker vectors for quantum groups. Comm Algebra, 2007, 35(8): 2506-2523
CrossRef Google scholar
[25]
Ondrus M, Wiesner E. Whittaker modules for the Virasoro algebra. J Algebra Appl, 2009, 8(3): 363-377
CrossRef Google scholar
[26]
Sevostyanov A. Quantum deformation of Whittaker modules and the Toda lattice. Duke Math J, 2000, 105(2): 211-238
CrossRef Google scholar
[27]
Tang X. On Whittaker modules over a class of algebras similar to U(sl2). Front Math China, 2007, 2(1): 127-142
CrossRef Google scholar
[28]
Wang B. Whittaker modules for graded Lie algebras. Preprint. ArXiv: 0902.3801
[29]
Wang B, Zhu X. Whittaker modules for a Lie algebra of Block type. Preprint. ArXiv: 0907.0773
[30]
Wang X, Zhao K. Verma modules over Virasoro-like algebras. J Aust Math Soc, 2006, 80(2): 179-191
CrossRef Google scholar
[31]
Wilson B J. Highest weight theory for truncated current Lie algebras. Preprint. ArXiv: 0705.1203
[32]
Wilson B J. Representations of truncated current Lie algebras. Aust Math Soc Gaz, 2007, 34(5): 279-282
[33]
Zhang W, Dong C. W-algebra W(2, 2) and the vertex operator algebra L(1/2, 0) ⊗ L(1/2, 0). Comm Math Phys, 2009, 285: 991-1004
CrossRef Google scholar
[34]
Zhang X, Tan S, Lian H. Whittaker modules for the Schrŏdinger-Witt algebra. J Math Phys, 2010, 51(8): 083524
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(156 KB)

Accesses

Citations

Detail

Sections
Recommended

/